scholarly journals LncRNA HOTAIR Regulates CCND1 and CCND2 Expression by Sponging miR-206 in Ovarian Cancer

2018 ◽  
Vol 49 (4) ◽  
pp. 1289-1303 ◽  
Author(s):  
Lei  Chang ◽  
Ruixia Guo ◽  
Zhongfu Yuan ◽  
Huirong Shi ◽  
Dongya Zhang

Background/Aims: The long noncoding RNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been demonstrated to be a vital modulator in the proliferation and metastasis of ovarian cancer cells, but its potential molecular mechanism remains to be elucidated. In the current study, we aimed to uncover the biological role of lncRNA HOTAIR and its underlying regulatory mechanism in the progression and metastasis of ovarian cancer. Methods: HOTAIR expression was detected by quantitative RT-PCR (qRT-PCR) and northern blotting. The SKOV3 ovarian cancer cell line was chosen for the subsequent assays. In addition, the molecular mRNA and protein expression levels were examined by qRT-PCR and western blotting. The competitive endogenous RNA (ceRNA) mechanism was validated by bioinformatics analysis and a dual luciferase reporter gene assay. Results: HOTAIR expression was significantly higher in ovarian carcinoma tissues and cell lines than in the control counterparts. Both CCND1 and CCND2 were downstream targets of miR-206. The inhibition of HOTAIR elevated the expression of miR-206 and inhibited the expression of CCND1 and CCND2. Moreover, CCND1 and CCND2 were highly expressed in ovarian cancer tissues, and their expression was positively correlated with HOTAIR expression. Finally, the functional assays indicated that the anticancer effects of miR-206 could be rescued by the simultaneous overexpression of either CCND1 or CCND2 in ovarian cancer. Conclusion: HOTAIR enhanced CCND1 and CCND2 expression by negatively modulating miR-206 expression and stimulating the proliferation, cell cycle progression, migration and invasion of ovarian cancer cells.

2020 ◽  
Vol 52 (3) ◽  
pp. 798-814 ◽  
Author(s):  
De-Ying Wang ◽  
Na Li ◽  
Yu-Lan Cui

PurposeColon cancer-associated transcript 1 (CCAT1) was identified as an oncogenic long non-coding RNA (lncRNA) in a variety of cancers. However, there was a lack of understanding of the mechanism by which CCAT1 conferred cisplatin (also known as DDP) resistance in ovarian cancer cells.Materials and MethodsCell viability of A2780, SKOV3, A2780/DDP, and SKOV3/DDP cells upon cisplatin treatment was monitored by MTT assay. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected the expression levels of CCAT1 and miR-454. The effect of sh-CCAT1 on cisplatin response was investigated in xenografts study. Bioinformatic analysis, luciferase reporter assay and qRT-PCR were conducted to validate the direct interaction among CCAT1, miR-454, and survivin. Apoptosis was determined by flow cytometry after dual staining of Annexin-V-FITC/propidium iodide, and the expression of apoptosis-related proteins Bcl-2, Bax and survivin were detected by qRT-PCR and Western blotting. Xenograft study was conducted to monitor <i>in vivo</i> tumor formation.ResultsCCAT1 was highly expressed in cisplatin-resistant ovarian cancer cell line A2780/DDP and SKOV3/DDP. Knockdown of CCAT1 restored sensitivity to cisplatin <i>in vitro</i> and <i>in vivo</i>. Our data revealed that silencing of CCAT1 promoted cisplatin-induced apoptosis via modulating the expression of pro- or anti-apoptotic proteins Bax, Bcl-2, and survivin. CCAT1 directly interacted with miR-454, and miR-454 overexpression potentiated cisplatin-induced apoptosis. Survivin was identified as a functional target of miR-454, restoration of survivin attenuated the effect of miR-454 on cisplatin response. In addition, miR-454 inhibitor or overexpression of survivin was found to abolish sh-CCAT1–induced apoptosis upon cisplatin treatment.ConclusionCCAT1/miR-454/survivin axis conferred cisplatin resistance in ovarian cancer cells.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ping Li ◽  
Hongyan Xin ◽  
Lili Lu

Abstract Background Recent studies have suggested a crucial role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in ovarian cancer treatment. We, therefore, set out to explore the mechanism through which MSC-derived EVs delivered microRNA-424 (miR-424) to influence the development of ovarian cancer. Methods Bioinformatics analyses were first performed to screen ovarian cancer-related differentially expressed genes and to predict regulatory miRNAs. Then, dual-luciferase reporter gene assay was carried out to verify the relationship between miR-424 and MYB. Subsequently, the characterized MSCs and isolated EVs were co-cultured with ovarian cancer cells, followed by determination of the expression patterns of miR-424, MYB, vascular endothelial growth factor (VEGF), and VEGF receptor (VEGFR), respectively. In addition, the effects of EVs-delivered miR-424 on the proliferation, migration, invasion and tube formation of ovarian cancer cells were assessed using gain- and loss-of-function approaches. Lastly, tumor xenograft was induced in nude mice to illustrate the influence of EVs-loaded miR-424 on ovarian cancer in vivo. Results Our data exhibited that MYB was highly-expressed and miR-424 was poorly-expressed in ovarian cancer. More importantly, MYB was identified as a target gene of miR-424. Additionally, the transfer of miR-424 by MSC-derived EVs was found to repress the proliferation, migration, and invasion of ovarian cancer cells, with a reduction in the expressions of VEGF and VEGFR. Furthermore, MSC-derived EVs over-expressing miR-424 could inhibit the proliferation, migration, and tube formation of human umbilical vein endothelial cells, and also suppressed tumorigenesis and angiogenesis of ovarian tumors in vivo. Conclusion Collectively, our findings indicate that MSC-derived EVs transfer miR-424 to down-regulate MYB, which ultimately led to the inhibition of the tumorigenesis and angiogenesis of ovarian cancer. Hence, this study offers a potential prognostic marker and a therapeutic target for ovarian cancer.


2020 ◽  
Author(s):  
Jian Cao ◽  
Huan Wang ◽  
Ranran Tang ◽  
Guangquan Liu ◽  
Pengfei Xu ◽  
...  

Abstract Background:LBX2-AS1 is a long noncoding RNA that facilitates the development of gastrointestinal cancers and lung cancer, but its participation in ovarian cancer development remained uninvestigated.Methods: Clinical data retrieved from TCGA ovarian cancer database and the clinography of 60 ovarian cancer patients who received anti-cancer treatment in our facility were analyzed. The overall cell growth, colony formation, migration, invasion, apoptosis and tumor formation on nude mice of ovarian cancer cells were evaluated before and after lentiviral-based LBX2-AS1 knockdown. ENCORI platform was used to explore LBX2-AS1-interacting microRNAs and target genes of the candidate microRNAs. Luciferase reporter gene assay and RNA-pulldown assay were used to verify the putative miRNA-RNA interactions.Results: Ovarian cancer tissue specimens showed significant higher LBX2-AS1 expression levels that non-cancerous counterparts. High expression level of LBX2-AS1 significantly associated with patients reduced overall survival. LBX2-AS1 knockdown significantly downregulated the cell growth, colony formation, migration, invasion and tumor formation capacity of ovarian cancer cells and increased their apoptosis in vitro. LBX2-AS1 interacts with and thus inhibits the function of miR-455-5p and miR-491-5p, both of which restrained the expression of E2F2 gene in ovarian cancer cells via mRNA targeting. Transfection of miRNA inhibitors of these two miRNAs or forced expression of E2F2 counteracted the effect of LBX2-AS1 knockdown on ovarian cancer cells.ConclusionsLBX2-AS1 was a novel cancer-promoting lncRNA in ovarian cancer. This lncRNA increased the cell growth, survival, migration, invasion and tumor formation of ovarian cancer cells by inhibiting miR-455-5p and miR-491-5p, thus liberating the expression of E2F2 cancer-promoting gene.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lijun Wang ◽  
Fei Zhao ◽  
Zhongqing Xiao ◽  
Liang Yao

Abstract Background Recently, the impact of microRNAs (miRNAs) and exosome on ovarian cancer has been assessed in many studies. We aim to explore the mechanism of exosomes transferring miR-205 in ovarian cancer, and confirm its diagnostic value in ovarian cancer. Methods The expression of miR-205 of ovarian cancer patients and healthy people was detected by RT-qPCR, and the diagnostic value of miR-205 was evaluated. The exosomes derived from SKOV3 cells were identified. Ovarian cancer SKOV3 donor cells and receptor cells were used to measure the proliferation, migration, invasion, apoptosis and cell cycle by a series of experiments. The binding site between miR-205 and vascular endothelial growth factor A (VEGFA) was evaluated by bioinformatics tool and dual-luciferase reporter gene assay. Results MiR-205 was up-regulated in ovarian cancer, and up-regulated miR-205 could enhance the risk of ovarian cancer and was one of its risk factors. After SKOV3 cells-derived exosomes were transiently introduced with miR-205 mimics, the cell proliferation, migration and invasion in ovarian cancer were elevated, the apoptosis of ovarian cancer cells was attenuated, and the epithelial–mesenchymal transition (EMT) protein E-cadherin was down-regulated, while Vimentin was elevated. VEGFA was identified to be a target gene of miR-205. Conclusion This study suggests that exosomes from donor ovarian cancer cell SKOV3 shuttled miR-205 could participate in the regulation of the proliferation, migration, invasion, apoptosis as well as EMT progression of receptor SKOV3 cells by targeting VEGFA.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Jin-Tian Miao ◽  
Jian-Hua Gao ◽  
Yong-Qian Chen ◽  
Hong Chen ◽  
Hao-Yi Meng ◽  
...  

Abstract This paper tried to explore ANRIL expression in ovarian cancer and how it affects cisplatin-sensitivity of ovarian cancer cells via regulation of let-7a/high-mobility group protein A2 (HMGA2) axis. qRT-PCR was used to detect ANRIL and let-7a levels in ovarian cancer tissues and cell lines (SKOV3 and SKOV3/DDP). Then cells were randomly assigned into Blank, negative control siRNA, ANRIL siRNA, let-7a inhibitor, and ANRIL siRNA+let-7a-inhibitor groups. CCK-8 assay was applied for assessing cell viability of cells treated with different concentrations of cisplatin. Flow cytometry was employed to test cell apoptosis rate. qRT-PCR and Western blot were performed for related molecules detection. Nude mice transplanted with SKOV3/DDP cells were used to confirm the effects of ANRIL siRNA on the cisplatin-sensitivity. Ovarian cancer tissues and cisplatin-resistant cells had increased ANRIL expression and decreased let-7a expression, and those patients with higher clinical stage and pathological grade showed higher ANRIL and lower let-7a. Dual-luciferase reporter-gene assay confirmed the targeting relationship between ANRIL and let-7a, and between let-7a and HMGA2. The cell viability and cisplatin IC50 were decreased in ANRIL siRNA group exposed to different concentrations of cisplatin, with enhanced apoptosis, as well as elevated let-7a and declined HMGA2, which would be reversed by let-7a inhibitor. Meanwhile, ANRIL down-regulation enhanced the inhibitory effect of cisplatin on tumor growth of nude mice and reduced tumor weight. Silencing ANRIL expression reduced HMGA2 expression to promote the apoptosis and improve cisplatin-sensitivity of ovarian cancer cells via up-regulating let-7a expression.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Li ◽  
Songlin Zhang ◽  
Lei Wu ◽  
Meili Pei ◽  
Yu Jiang

AbstractOvarian cancer is the first leading cause of death in gynecological cancers. The continuous survival and metastasis of cancer cells are the main causes of death and poor prognosis in patients with ovarian cancer. Berberine is an effective component extracted from the rhizomes of coptis chinensis and phellodendron chinensis. In our study, we aim to explore the molecular mechanism underlying the regulation of proliferation, migration and invasion by berberine in ovarian cancer cells. CCK8 assay was used for detection of proliferative capacity of SKOV3 and 3AO cells. Wound healing assay was used to estimate cell migration and transwell assay was used to assess cell invasion. The mRNA expression of miR-145 and MMP16 were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein level of MMP16 was detected by western blot analysis. In addition, luciferase reporter assays were used to demonstrate MMP16 was a target of miR-145. The results demonstrated berberine inhibited proliferation, migration and invasion, promoted miR-145 expression, and decreased MMP16 expression in SKOV3 and 3AO cells. MMP16 was a target of miR-145. Moreover, downregulation of MMP16 contributed to the inhibition of proliferation, migration and invasion by berberine. Together, our results revealed that berberine inhibited proliferation, migration and invasion through miR-145/MMP16 in SKOV3 and 3AO cells, highlighting the potentiality of berberine to be used as a therapeutic agent for ovarian cancer.


2020 ◽  
Author(s):  
Jiaping Pei ◽  
Xiaozhao Deng

Abstract Background LncRNA DSCAM-AS1 is oncogenic in several cancers. However, DSCAM-AS1 expression and function in colorectal cancer (CRC) remain far from being fully elucidated. Methods Paired CRC tissues/adjacent tissues were collected, and the expression levels of DSCAM-AS1, miR-144-5p and CDKL1 were examined by qRT-PCR; DSCAM-AS1 shRNA was transfected into HCT-116 and SW480 cell lines to establish cell models. The proliferation was detected through CCK-8 assay and plate colony formation assay. Transwell assay was used to evaluate the migration and invasion. QRT-PCR and western blot were adopted to analyze changes in miR-144-5p and CDKL1; luciferase reporter gene assay was performed to determine the regulatory relationship between miR-144-5p and DSCAM-AS1, miR-144-5p and CDKL1. Results DSCAM-AS1 was notably up-regulated in CRC samples, positively correlated with CDKL1 expression, while negatively correlated with miR-144-5p. After the transfection of DSCAM-AS1 shRNAs into cancer cells, the proliferative and metastatic ability of cancer cells were impeded. DSCAM-AS1 could reduce the expression level of miR-144-5p by binding with it. Additionally, CDKL1 was also validated as a target gene of miR-144-5p, and DSCAM-AS1 was proved to indirectly regulate CDKL1 expression. Conclusion DSCAM-AS1 was aberrantly up-regulated in CRC, and it can modulate the cells proliferative and metastatic ability. It has the ability to be the “ceRNA” to regulate CDKL1 expression via sponging miR-144-5p.


2018 ◽  
Vol 399 (5) ◽  
pp. 485-497 ◽  
Author(s):  
Siwei Liu ◽  
Huajiang Lei ◽  
Fangyuan Luo ◽  
Yilin Li ◽  
Lan Xie

AbstractThis study aimed at investigating the biological functions of long non-coding RNAs (lncRNAs) hox transcript antisense intergenic RNA (HOTAIR) in resistant ovarian cancer cells, exploring the regulation effect of HOTAIR onHOXA7, and investigating their influence on the chemosensitivity of ovarian cancer cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for the verification of HOTAIR expression in resistant and sensitive groups. How HOTAIR downregulation affected cell proliferation, migration and invasion, and apoptosis were determined using the MTT assay and the colony formation assay, the Transwell assay and flow cytometry analysis, respectively. Immunohistochemistry was used to inspect the protein expression of HOXA7 in resistant and sensitive ovarian cancer tissues. The regulation relationship between HOTAIR andHOXA7was investigated by qRT-PCR and Western blot. The effect of HOTAIR andHOXA7on tumor growth was confirmed by the tumor xenograft model of nude mice. By knocking downHOXA7, HOTAIR downregulation restrained the ovarian cancer deterioration in functional experiments. Silencing of HOTAIR andHOXA7could effectively inhibit tumor growth and increase chemosensitivity of ovarian tumors in nude mice. Downregulation of HOTAIR negatively affected the survival and activity of resistant ovarian cancer cells, and suppressed the expression ofHOXA7. Silencing of HOTAIR andHOXA7could increase the chemosensitivity of ovarian cancer cells, thus suppressing tumor development.


Sign in / Sign up

Export Citation Format

Share Document