scholarly journals Model-based reproduction and validation of the total spectrum of solar flare and their impact on the global environment at the X9.3 event of September 6, 2017

2020 ◽  
Author(s):  
Kyoko Watanabe ◽  
Hidekatsu Jin ◽  
Shohei Nishimoto ◽  
Shinsuke Imada ◽  
Toshiki Kawai ◽  
...  

Abstract We tried to reproduce the total electron content (TEC) variation in the Earth's atmosphere from the temporal variation of the solar flare spectrum of the X9.3 flare on September 6, 2017. The flare spectrum of the Flare Irradiance Spectral Model (FISM) which is most widely used and the flare spectrum from the 1D hydrodynamic model which considers the physics of plasma in the flare loop are used in the GAIA model which is a simulation model of the Earth's whole atmosphere and ionosphere, and calculate the difference of TEC. And then, we compared these results with the observed TEC. When we used the FISM flare spectrum, difference of TEC from the background was in a good agreement with the observation. On the other hand, when the flare spectrum of the 1D-hydro model was used, the result varied depending on the presence or absence of the background. This difference which depends on the models is thought to represent which EUV radiation is primarily responsible for increasing TEC. From the flare spectrum obtained from these models and the calculation result of TEC fluctuation using GAIA, it is considered that the enhancement in EUV emission about 15 to 35 nm is mainly contributes to increasing TEC rather than that of X-ray emission that has been thought to be mainly responsible for sudden ionospheric disturbance (SID). Also, from the altitude/wavelength distribution of the ionization rate of Earth's atmosphere by GAIA, it was found that EUV radiation of about 15–35 nm affects a wide altitude range of 120–300 km, and TEC enhancement is mainly caused by ionization of nitrogen molecules. (265 words)

2021 ◽  
Author(s):  
Kyoko Watanabe ◽  
Hidekatsu Jin ◽  
Shohei Nishimoto ◽  
Shinsuke Imada ◽  
Toshiki Kawai ◽  
...  

Abstract We attempted to reproduce the total electron content (TEC) variation in the Earth's atmosphere from the temporal variation of the solar flare spectrum of the X9.3 flare on September 6, 2017. The flare spectrum from the Flare Irradiance Spectral Model (FISM), and the flare spectrum from the 1D hydrodynamic model, which considers the physics of plasma in the flare loop, are used in the GAIA model, which is a simulation model of the Earth's whole atmosphere and ionosphere, to calculate the TEC difference. We then compared these results with the observed TEC. When we used the FISM flare spectrum, the difference in TEC from the background was in a good agreement with the observation. However, when the flare spectrum of the 1D-hydrodynamic model was used, the result varied depending on the presence or absence of the background. This difference depending on the models is considered to represent which extreme ultraviolet (EUV) radiation is primarily responsible for increasing TEC. From the flare spectrum obtained from these models and the calculation result of TEC fluctuation using GAIA, it is considered that the enhancement in EUV emission by approximately 15–35 nm mainly contributes in increasing TEC rather than that of X-ray emission, which is thought to be mainly responsible for sudden ionospheric disturbance. In addition, from the altitude/wavelength distribution of the ionization rate of Earth's atmosphere by GAIA (Ground-to-topside atmosphere and ionosphere model for aeronomy), it was found that EUV radiation of approximately 15–35 nm affects a wide altitude range of 120–300 km, and TEC enhancement is mainly caused by the ionization of nitrogen molecules. (265 words)


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kyoko Watanabe ◽  
Hidekatsu Jin ◽  
Shohei Nishimoto ◽  
Shinsuke Imada ◽  
Toshiki Kawai ◽  
...  

AbstractWe attempted to reproduce the total electron content (TEC) variation in the Earth's atmosphere from the temporal variation of the solar flare spectrum of the X9.3 flare on September 6, 2017. The flare spectrum from the Flare Irradiance Spectral Model (FISM), and the flare spectrum from the 1D hydrodynamic model, which considers the physics of plasma in the flare loop, are used in the GAIA model, which is a simulation model of the Earth's whole atmosphere and ionosphere, to calculate the TEC difference. We then compared these results with the observed TEC. When we used the FISM flare spectrum, the difference in TEC from the background was in a good agreement with the observation. However, when the flare spectrum of the 1D-hydrodynamic model was used, the result varied depending on the presence or absence of the background. This difference depending on the models is considered to represent which extreme ultraviolet (EUV) radiation is primarily responsible for increasing TEC. From the flare spectrum obtained from these models and the calculation result of TEC fluctuation using GAIA, it is considered that the enhancement in EUV emission by approximately 15–35 nm mainly contributes in increasing TEC rather than that of X-ray emission, which is thought to be mainly responsible for sudden ionospheric disturbance. In addition, from the altitude/wavelength distribution of the ionization rate of Earth's atmosphere by GAIA (Ground-to-topside Atmosphere and Ionosphere model for Aeronomy), it was found that EUV radiation of approximately 15–35 nm affects a wide altitude range of 120–300 km, and TEC enhancement is mainly caused by the ionization of nitrogen molecules.


1996 ◽  
Vol 39 (3) ◽  
Author(s):  
R. G. Ezquer ◽  
M. Mosert de Gonzalez ◽  
T. Heredia

The Base Point Model (BPM) is used to model the electron density (N) profile in the ionosphere, This model assumes two Chapman profile expressions one for the bottomside and one for the topside, and requires a characteristic point called "F region base point". The comparison among the modeled and experimental bottom-side N profiles obtained from Tucuman (26,9°S; 65.4°W) ionosonde shows that, in general, there is a very good agreement within 30 km below the height of the maximum N(hm). Cases with a very good agreement for the entire N-profile are observed. The study of the electron content below hm and the Total Electron Content (TEC) measured over Tucuman shows that, the difference among predicted and measured TEC is due to the disagreement in the topside N-profile more than that observed in the bottomside N-profile.


2010 ◽  
Vol 28 (8) ◽  
pp. 1571-1580 ◽  
Author(s):  
D. H. Zhang ◽  
W. Zhang ◽  
Q. Li ◽  
L. Q. Shi ◽  
Y. Q. Hao ◽  
...  

Abstract. With one bias estimation method, the latitude-related error distribution of instrumental biases estimated from the GPS observations in Chinese middle and low latitude region in 2004 is analyzed statistically. It is found that the error of GPS instrumental biases estimated under the assumption of a quiet ionosphere has an increasing tendency with the latitude decreasing. Besides the asymmetrical distribution of the plasmaspheric electron content, the obvious spatial gradient of the ionospheric total electron content (TEC) along the meridional line that related to the Equatorial Ionospheric Anomaly (EIA) is also considered to be responsible for this error increasing. The RMS of satellite instrumental biases estimated from mid-latitude GPS observations in 2004 is around 1 TECU (1 TECU = 1016/m2), and the RMS of the receiver's is around 2 TECU. Nevertheless, the RMS of satellite instrumental biases estimated from GPS observations near the EIA region is around 2 TECU, and the RMS of the receiver's is around 3–4 TECU. The results demonstrate that the accuracy of the instrumental bias estimated using ionospheric condition is related to the receiver's latitude with which ionosphere behaves a little differently. For the study of ionospheric morphology using the TEC derived from GPS data, in particular for the study of the weak ionospheric disturbance during some special geo-related natural hazards, such as the earthquake and severe meteorological disasters, the difference in the TEC accuracy over different latitude regions should be paid much attention.


Earth ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 191-207
Author(s):  
Roberto Colonna ◽  
Valerio Tramutoli

In this work, a solar illumination model of the Earth’s atmosphere is developed. The developed model allows us to determine with extreme accuracy how the atmospheric illumination varies during night hours on a global scale. This time-dependent variation in illumination causes a series of sudden changes in the entire Earth-atmosphere-ionosphere system of considerable interest for various research sectors and applications related to climate change, ionospheric disturbances, navigation and global positioning systems. The use of the proposed solar illumination model to calculate the time-dependent Solar Terminator Height (STH) at the global scale is also presented.Time-dependent STH impact on the measurements of ionospheric Total Electron Content (TEC) is, for the first time, investigated on the basis of 20 years long time series of GPS-based measurements collected at ground. The correlation analysis, performed in the post-sunset hours, allows new insights into the dependence of TEC–STH relation on the different periods (seasons) of observation and solar activity conditions.


2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


2019 ◽  
Vol 5 (3) ◽  
pp. 68-74
Author(s):  
Евгений Маурчев ◽  
Evgeniy Maurchev ◽  
Юрий Балабин ◽  
Yuriy Balabin ◽  
Алексей Германенко ◽  
...  

This paper explores the applied use of the RUSCOSMICS software package [http://ruscosmics.ru] designed to simulate propagation of primary cosmic ray (CR) particles through Earth’s atmosphere and collect information about characteristics of their secondary component. We report the results obtained for proton fluxes with energy distributions corresponding to the differential spectra of galactic CR (GCR) and solar CR (SCR) during ground level enhancement (GLE) events GLE65 and GLE67. We examine features of the geometry of Earth’s atmosphere, parametrization methods, and describe a primary particle generator. The typical energy spectra of electrons obtained both for GCR and for GLE65 provide information that allows us to quantitatively estimate the SCR contribution to the enhancement of secondary CR fluxes. We also present altitude dependences of ionization rate for GCR and both the GLE events for several geomagnetic cutoff rigidity values. The conclusion summarizes and discusses the prospects for future research.


2018 ◽  
Vol 14 (2) ◽  
pp. 111
Author(s):  
Sri Ekawati

The solar flare is potential to cause sudden increase of the electron density in the ionosphere,particularly in D layer, known as Sudden Ionospheric Disturbances (SID). This increase of electron density occurs not only in the ionospheric D layer but also in the ionospheric E and F layers. Total Electron Content (TEC) measured by GPS is the total number of electrons from D to F layer. The aim of this research is to study the effect of solar flare x-rays, greater than M5 class in 2015, on ionospheric TEC over Bandung and Manado. This paper presents the preliminary result of ionospheric TEC response on solar flare occurrence over Indonesia. The ionospheric TEC data is derived from GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at Bandung (-6.90o S;107.6o E geomagnetic latitude 16.54o S) and Manado (1.48o N; 124.85o E geomagnetic latitude 7.7o S). The solar x-rays flares classes analyzed where M5.1 on 10 March 2015 and M7.9 on 25 June 2015. Slant TEC (STEC) values where calculated to obtain Vertical TEC (VTEC) and the Differential of the VTEC (DVTEC) per PRN satellite for further analysis. The results showed that immediately after the flare, there where sudden enhancement of the VTEC and the DVTEC (over Bandung and Manado) at the same time. The time delay of ionospheric TEC response on M5.1 flare was approximately 2 minutes, then the VTEC increased by 0.5 TECU and the DVTEC rose sharply by 0.5 – 0.6 TECU/minutes. Moreover, the time delay after the M7.9 flare was approximately 11 minutes, then the VTEC increased by 1 TECU and the DVTEC rose sharply by 0.6 – 0.9 TECU/minutes. ABSTRAK Flare matahari berpotensi meningkatkan kerapatan elektron ionosfer secara mendadak, khususnya di lapisan D, yang dikenal sebagai Sudden Ionospheric Disturbances (SID). Peningkatan kerapatan elektron tersebut terjadi tidak hanya di lapisan D, tetapi juga di lapisan E dan F ionosfer. Total Electron Content (TEC) dari GPS merupakan jumlah banyaknya elektron total dari lapisan D sampai lapisan F. Penelitian ini bertujuan mengetahui efek flare, yang lebih besar dari kelas M5 tahun 2015, terhadap TEC ionosfer di atas Bandung dan Manado. Makalah ini merupakan hasil awal dari respon TEC ionosfer terhadap fenomena flare di atas Indonesia. Data TEC ionosfer diperoleh dari penerima GPS Ionospheric Scintillation and TEC Monitor (GISTM) di Bandung (-6,90o S; 107,60o E lintang geomagnet 16,54o LS) dan Manado (1,48oLU;124,85oBT lintang geomagnet 7,7o LS) dikaitkan dengan kejadian flare kelas M5.1 pada tanggal 10 Maret 2015 dan kelas M7.9 pada tanggal 25 Juni 2015. Nilai Slant TEC (STEC) dihitung untuk memperoleh nilai Vertical TEC (VTEC), kemudian nilai Differential of VTEC (DVTEC) per PRN satelit diperoleh untuk analisis selanjutnya. Hasil menunjukkan segera setelah terjadi flare, terjadi peningkatan VTEC dan DVTEC (di atas Bandung dan Manado) secara mendadak pada waktu yang sama. Waktu tunda dari respon TEC ionosfer setelah terjadi flare M5.1 adalah sekitar 2 menit, kemudian VTEC meningkat sebesar 0,5 TECU dan DVTEC meningkat secara tajam sebesar 0,5 – 0,6 TECU/menit. Sedangkan, waktu tunda setelah terjadi flare M7.9 adalah 11 menit, kemudian VTEC meningkat sebesar 1 TECU dan DVTEC meningkat secara tajam sebesar 0,6 – 0,9 TECU/menit.


2017 ◽  
Vol 35 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Ayman Mahrous

Abstract. This paper presents observational evidence of frequent ionospheric perturbations caused by the magnetar flare of the source SGR J1550–5418, which took place on 22 January 2009. These ionospheric perturbations are observed in the relative change of the total electron content (ΔTEC/Δt) measurements from the coherent ionospheric Doppler radar (CIDR). The CIDR system makes high-precision measurements of the total electron content (TEC) change along ray-paths from ground receivers to low Earth-orbiting (LEO) beacon spacecraft. These measurements can be integrated along the orbital track of the beacon satellite to construct the relative spatial, not temporal, TEC profiles that are useful for determining the large-scale plasma distribution. The observed spatial TEC changes reveal many interesting features of the magnetar signatures in the ionosphere. The onset phase of the magnetar flare was during the CIDR's nighttime satellite passage. The nighttime small-scale perturbations detected by CIDR, with ΔTEC/Δt  ≥  0.05 TECU s−1, over the eastern Mediterranean on 22 January 2009 were synchronized with the onset phase of the magnetar flare and consistent with the emission of hundreds of bursts detected from the source. The maximum daytime large-scale perturbation measured by CIDR over northern Africa and the eastern Mediterranean was detected after ∼ 6 h from the main phase of the magnetar flare, with ΔTEC/Δt  ≤  0.10 TECU s−1. These ionospheric perturbations resembled an unusual poleward traveling ionospheric disturbance (TID) caused by the extraterrestrial source. The TID's estimated virtual velocity is 385.8 m s−1, with ΔTEC/Δt  ≤  0.10 TECU s−1.


Sign in / Sign up

Export Citation Format

Share Document