Validation of Extreme Ultraviolet Emission Spectra During Solar Flares 

2020 ◽  
Author(s):  
Shohei Nishimoto ◽  
Kyoko Watanabe ◽  
Toshiki Kawai ◽  
Shinsuke Imada ◽  
Tomoko Kawate

Abstract X-rays and extreme ultraviolet (EUV) emissions from solar flares rapidly change the physical composition of the Earth’s thermosphere and ionosphere, thereby causing space weather phenomena such as communication failures. To predict the effects of flare emissions on the Earth’s upper atmosphere, numerous empirical and physical models have been developed. We verify the extent of reproducing the flare emission spectra using a one-dimensional hydrodynamic calculation and the CHIANTI atomic database. To verify the proposed model, we use the observed EUV spectra obtained by the extreme ultraviolet variability (EVE) on board the Solar Dynamics Observatory (SDO). We examined the “EUV flare time-integrated irradiance” and “EUV flare line rise time” of the EUV emissions for 21 events by comparing the calculation results of the proposed model and observed EUV spectral data. The proposed model succeeded in reproducing the EUV flare time-integrated irradiance of the Fe VIII 131 Å, Fe XVIII 94 Å, and Fe XX 133 Å, as well as the 55 to 355 Å and 55 to 135 Å bands. For the EUV flare line rise time, there was acceptable correlation between the proposed model estimations and observations for all Fe flare emission lines. These results demonstrate that the proposed model can reproduce the EUV flare emission spectra from the emitting plasma with relatively high formation temperature. This indicates that the physics-based model is effective for the accurate reproduction of EUV spectral flux.

2020 ◽  
Author(s):  
Shohei Nishimoto ◽  
Kyoko Watanabe ◽  
Toshiki Kawai ◽  
Shinsuke Imada ◽  
Tomoko Kawate

Abstract X-rays and extreme ultraviolet (EUV) emissions from solar flares rapidly change the physical composition of the Earth’s thermosphere and ionosphere, thereby causing space weather phenomena such as communication failures. To predict the effects of flare emissions on the Earth’s upper atmosphere, numerous empirical and physical models have been developed. We verify the extent of reproducing the flare emission spectra using a one-dimensional hydrodynamic calculation and the CHIANTI atomic database. To verify the proposed model, we use the observed EUV spectra obtained by the extreme ultraviolet variability (EVE) on board the Solar Dynamics Observatory (SDO). We examined the “EUV flare time-integrated irradiance” and “EUV flare line rise time” of the EUV emissions for 21 events by comparing the calculation results of the proposed model and observed EUV spectral data. The proposed model succeeded in reproducing the EUV flare time-integrated irradiance of the Fe VIII 131 Å , Fe XVIII 94 Å, and Fe XX 133 Å, as well as the 55 to 355 Å and 55 to 135 Å bands. For the EUV flare line rise time, there was acceptable correlation between the proposed model estimations and observations for all Fe flare emission lines. These results demonstrate that the proposed model can reproduce the EUV flare emission spectra from the emitting plasma with relatively high formation temperature. This indicates that the physics-based model is effective for the accurate reproduction of EUV spectral flux.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shohei Nishimoto ◽  
Kyoko Watanabe ◽  
Toshiki Kawai ◽  
Shinsuke Imada ◽  
Tomoko Kawate

AbstractX-rays and extreme ultraviolet (EUV) emissions from solar flares rapidly change the physical composition of the Earth’s thermosphere and ionosphere, thereby causing space weather phenomena such as communication failures. Numerous empirical and physical models have been developed to estimate the effects of flare emissions on the Earth’s upper atmosphere. We verified the reproduction of the flare emission spectra using a one-dimensional hydrodynamic calculation and the CHIANTI atomic database. To validate the proposed model, we used the observed EUV spectra obtained by the Extreme ultraviolet variability experiment (EVE) on board the Solar Dynamics Observatory (SDO). We examined the “EUV flare time-integrated irradiance” and “EUV flare line rise time” of the EUV emissions for 21 events by comparing the calculation results of the proposed model and observed EUV spectral data. The proposed model successfully reproduced the EUV flare time-integrated irradiance of the Fe VIII 131 Å, Fe XVIII 94 Å, and Fe XX133 Å, as well as the 55–355 Å and 55–135 Å bands. For the EUV flare line rise time, there was an acceptable correlation between the proposed model estimations and observations for all Fe flare emission lines. These results demonstrate that the proposed model can reproduce the EUV flare emission spectra from the emitting plasma with a relatively high formation temperature. This indicates that the physics-based model is effective for the accurate reproduction of the EUV spectral irradiance.


2015 ◽  
Vol 11 (S320) ◽  
pp. 41-50
Author(s):  
Ryan O. Milligan

AbstractFor the past six years, the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has been monitoring changes in the Sun's extreme ultraviolet output over a range of timescales. Its primary function is to provide measurements of the solar spectral irradiance that is responsible for driving fluctuations in Earth's ionosphere and thermosphere. However, despite its modest spectral resolution and lack of spatial information, the EVE spectral range contains many lines and continua that have become invaluable for diagnosing the response of the lower solar atmosphere itself to an injection of energy, particularly during a flare's impulsive phase. In addition, high temperature emission lines can also be used to track changes in temperature and density of flaring plasma in the corona. The high precision of EVE observations are therefore crucial in helping us understand particle acceleration and energy transport mechanisms during solar flares, as well as the origins of the Sun's most geoeffective emission.


2018 ◽  
Vol 615 ◽  
pp. A47 ◽  
Author(s):  
Srividya Subramanian ◽  
Vinay L. Kashyap ◽  
Durgesh Tripathi ◽  
Maria S. Madjarska ◽  
John G. Doyle

We study the thermal structure and energetics of the point-like extreme ultraviolet (EUV) brightenings within a system of fan loops observed in the active region AR 11520. These brightenings were simultaneously observed on 2012 July 11 by the High-resolution Coronal (Hi-C) imager and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We identified 27 brightenings by automatically determining intensity enhancements in both Hi-C and AIA 193 Å light curves. The energetics of these brightenings were studied using the Differential Emission Measure (DEM) diagnostics. The DEM weighted temperatures of these transients are in the range log T(K) = 6.2−6.6 with radiative energies ≈1024−25 ergs and densities approximately equal to a few times 109 cm−3. To the best of our knowledge, these are the smallest brightenings in EUV ever detected. We used these results to determine the mechanism of energy loss in these brightenings. Our analysis reveals that the dominant mechanism of energy loss for all the identified brightenings is conduction rather than radiation.


2021 ◽  
Author(s):  
Jonas Saqri ◽  
Astrid Veronig ◽  
Ewan Dickson ◽  
Säm Krucker ◽  
Andrea Francesco Battaglia ◽  
...  

<p>Solar flares are generally thought to be the impulsive release of magnetic energy giving rise to a wide range of solar phenomena that influence the heliosphere and in some cases even conditions of earth. Part of this liberated energy is used for particle acceleration and to heat up the solar plasma. The Spectrometer/Telescope for Imaging X-rays (STIX) instrument onboard the Solar Orbiter mission launched on February 10th 2020 promises advances in the study of solar flares of various sizes. It is capable of measuring X-ray spectra from 4 to 150 keV with 1 keV resolution binned into 32 energy bins before downlinking. With this energy range and sensitivity, STIX is capable of sampling thermal plasma with temperatures of≳10 MK, and to diagnose the nonthermal bremsstrahlung emission of flare-accelerated electrons. During the spacecraft commissioning phase in the first half of the year 2020, STIX observed 68 microflares. Of this set, 26 events could clearly be identified in at least two energy channels, all of which originated in an active region that was also visible from earth. These events provided a great opportunity to combine the STIX observations with the multi-band EUV imagery from the Atmospheric Imaging Assembly (AIA) instrument on board the earth orbiting Solar Dynamics Observatory (SDO). For the microflares that could be identified in two STIX science energy bands, it was possible to derive the temperature and emission measure (EM) of the flaring plasma assuming an isothermal source. For larger events where more detailed spectra could be derived, a more accurate analysis was performed by fitting the spectra assuming various thermal and nonthermal sources. These results are compared to the diagnostics derived from AIA images. To this aim, the Differential EmissionMeasure (DEM) was reconstructed from AIA observations to infer plasma temperatures and EM in the flaring regions. Combined with the the relative timing between the emission seen by STIX and AIA, this allows us to get deeper insight into the flare energy release and transport processes.</p>


2019 ◽  
Vol 627 ◽  
pp. L5 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
L. Li

A solar filament is a dense cool condensation that is supported and thermally insulated by magnetic fields in the rarefied hot corona. Its evolution and stability, leading to either an eruption or disappearance, depend on its coupling with the surrounding hot corona through a thin transition region, where the temperature steeply rises. However, the heating and dynamics of this transition region remain elusive. We report extreme-ultraviolet observations of quiescent filaments from the Solar Dynamics Observatory that reveal prominence spicules propagating through the transition region of the filament-corona system. These thin needle-like jet features are generated and heated to at least 0.7 MK by turbulent motions of the material in the filament. We suggest that the prominence spicules continuously channel the heated mass into the corona and aid in the filament evaporation and decay. Our results shed light on the turbulence-driven heating in magnetized condensations that are commonly observed on the Sun and in the interstellar medium.


2011 ◽  
Vol 7 (S286) ◽  
pp. 238-241
Author(s):  
Federico A. Nuevo ◽  
Alberto M. Vásquez ◽  
Richard A. Frazin ◽  
Zhenguang Huang ◽  
Ward B. Manchester

AbstractWe recently extended the differential emission measure tomography (DEMT) technique to be applied to the six iron bands of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). DEMT products are the 3D reconstruction of the coronal emissivity in the instrument's bands, and the 3D distribution of the local differential emission measure, in the height range 1.0 to 1.25 R⊙. We show here derived maps of the electron density and temperature of the inner solar corona during the rising phase of solar Cycle 24. We discuss the distribution of our results in the context of open/closed magnetic regions, as derived from a global potential field source surface (PFSS) model of the same period. We also compare the results derived with SDO/AIA to those derived with the Extreme UltraViolet Imager (EUVI) instrument aboard the Solar TErrestrial RElations Observatory (STEREO).


2020 ◽  
Vol 638 ◽  
pp. A32 ◽  
Author(s):  
Q. M. Zhang ◽  
J. Dai ◽  
Z. Xu ◽  
D. Li ◽  
L. Lu ◽  
...  

Aims. We report our multiwavelength observations of two homologous circular-ribbon flares in active region 11991 on 2014 March 5, focusing on the transverse oscillations of an extreme-ultraviolet (EUV) loop excited by the flares. Methods. The flares were observed in ultraviolet and EUV wavelengths by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory spacecraft. These flares were also observed in Hα line center by the 1 m New Vacuum Solar Telescope. Soft X-ray fluxes of the flares in 0.5–4 and 1–8 Å were recorded by the GOES spacecraft. Results. The transverse oscillations are of fast standing kink mode. The first-stage oscillation triggered by the C2.8 flare is decayless with lower amplitudes (310–510 km). The periods (115–118 s) in different wavelengths are nearly the same, indicating coherent oscillations. The magnetic field of the loop is estimated to be 65–78 G. The second-stage oscillation triggered by the M1.0 flare is decaying with larger amplitudes (1250–1280 km). The periods decrease from 117 s in 211 Å to 70 s in 171 Å, implying a decrease of loop length or an implosion after a gradual expansion. The damping time, which is 147–315 s, increases with the period, so that the values of τ/P are close to each other in different wavelengths. The thickness of the inhomogeneous layer is estimated to be ∼0″​​​.45 under the assumption of resonant absorption. Conclusions. This is the first observation of the excitation of two kink-mode loop oscillations by two sympathetic flares. The results are important to understand the excitation of kink oscillations of coronal loops and hence the energy balance in the solar corona. Our findings also validate the prevalence of significantly amplified amplitudes of oscillations by successive drivers.


Sign in / Sign up

Export Citation Format

Share Document