Identification of Ubiquitin Ligase From Grapevine Ring C3H2C3E3 and Characterization of Drought Resistance Function of VyRCHC114

2020 ◽  
Author(s):  
Yihe Yu ◽  
Shengdi Yang ◽  
Lu Bian ◽  
Keke Yu ◽  
Xiangxuan Meng ◽  
...  

Abstract Background: RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, playing an important role in plants’ development and growth and their biotic and abiotic stress responses. Results: A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, with these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VyRCHCs family together. Structural analysis showed that most VyRCHCs(67.13%) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VyRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were similar to those in qRT-PCR analysis. The in vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance, moreover, the transgenic plant survival rate increased by 30%, accompanied by changing of electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 were expressed quantitatively, the results showed that they participated in the drought stress response may be regulated by the expression of VyRCHC114.Conclusions: Valuable new information on the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress emerged from this research.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yihe Yu ◽  
Shengdi Yang ◽  
Lu Bian ◽  
Keke Yu ◽  
Xiangxuan Meng ◽  
...  

Abstract Background RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, which plays an important role in plant growth and development, and growth and responses to biotic and abiotic stresses. Results A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, and these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VvRCHCs family together. Structural analysis showed that most VvRCHCs (67.13 %) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VvRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were like the results of qRT-PCR analysis. In vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance. Moreover, the transgenic plant survival rate increased by 30 %, accompanied by electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. The quantitative expression of AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 showed that they participated in the response to drought stress may be regulated by the expression of VyRCHC114. Conclusions This study provides valuable new information for the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress.


2011 ◽  
Vol 157 (4) ◽  
pp. 2240-2257 ◽  
Author(s):  
Seok Keun Cho ◽  
Moon Young Ryu ◽  
Dong Hye Seo ◽  
Bin Goo Kang ◽  
Woo Taek Kim

2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


2014 ◽  
Vol 1842 (9) ◽  
pp. 1527-1538 ◽  
Author(s):  
Katharina Flach ◽  
Ellen Ramminger ◽  
Isabel Hilbrich ◽  
Annika Arsalan-Werner ◽  
Franziska Albrecht ◽  
...  

2007 ◽  
Vol 179 (5) ◽  
pp. 935-950 ◽  
Author(s):  
K.G. Suresh Kumar ◽  
Hervé Barriere ◽  
Christopher J. Carbone ◽  
Jianghuai Liu ◽  
Gayathri Swaminathan ◽  
...  

Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process.


Sign in / Sign up

Export Citation Format

Share Document