scholarly journals Climate Change Alters The Interaction of Two Invasive Beachgrasses With Implications For Range Shifts And Coastal Dune Functions

Author(s):  
Reuben G. Biel ◽  
Sally D. Hacker

Abstract Forecasting the effects of climate change on the distribution of invasive species can be difficult because invaders often thrive under novel physical conditions and biotic interactions that differ from those in their native range. In this study, we experimentally examined how rising temperatures and sand burial could alter the abundance and biotic interactions of two invasive beachgrasses, Ammophila arenaria and A. breviligulata, along the U.S. Pacific Northwest coast. We asked whether the current geographic ranges of the two congeners, and thus their effects on dune morphology and coastal ecosystem services, might shift as a consequence of climate driven changes in warming and sand supply. Our results show that A. breviligulata had lower biomass and tiller production when exposed to warming and high rates of sand burial, while A. arenaria showed neutral or positive responses to those treatments. Nevertheless, under all experimental combinations, A. breviligulata had strong negative effects on A. arenaria, while A. arenaria had weaker effects on A. breviligulata. Our models predict that although A. breviligulata mostly excludes A. arenaria, elevated temperatures and high rates of sand burial also increase the likelihood of species coexistence. We suggest that under climate change, the differences in physiological tolerance and the mediation of species interactions could expand the northern distributional limit of A. arenaria but restrict the southern limit of A. breviligulata. Moreover, because beachgrass abundance has direct effects on biophysical functions of dunes, reductions in vigor from warming could alter coastal protection, biodiversity, and carbon sequestration.

2013 ◽  
Vol 280 (1750) ◽  
pp. 20121890 ◽  
Author(s):  
Abigail E. Cahill ◽  
Matthew E. Aiello-Lammens ◽  
M. Caitlin Fisher-Reid ◽  
Xia Hua ◽  
Caitlin J. Karanewsky ◽  
...  

Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.


2007 ◽  
Vol 56 (1-6) ◽  
pp. 101-110 ◽  
Author(s):  
Chr. Wehenkel ◽  
F. Bergmann ◽  
H.-R. Gregorius

Abstract Studies on plant communities of various annual species suggest that there are particular biotic interactions among individuals from different species which could be the basis for long-term species coexistence. In the course of a large survey on species-genetic diversity relationships in several forest tree communities, it was found that statistically significant differences exist among isozyme genotype frequencies of conspecific tree groups, which differ only by species identity of their neighbours. Based on a specific measure, the association of the neighbouring species with the genotypes of the target species or that of the genotypes with the neighbouring species was quantified. Since only AAT and HEK of the five analysed enzyme systems differed in their genotype frequencies among several tree groups of the same target species, a potential involvement of their enzymatic function in the observed differences was discussed. The results of this study demonstrate a fine-scale genetic differentiation within single tree species of forest communities, which may be the result of biotic interactions between the genetic structure of a species and the species composition of its community. This observation also suggests the importance of intraspecific genetic variation for interspecific adaptation.


2020 ◽  
Vol 117 (37) ◽  
pp. 22858-22865 ◽  
Author(s):  
Vigdis Vandvik ◽  
Olav Skarpaas ◽  
Kari Klanderud ◽  
Richard J. Telford ◽  
Aud H. Halbritter ◽  
...  

Generality in understanding biodiversity responses to climate change has been hampered by substantial variation in the rates and even directions of response to a given change in climate. We propose that such context dependencies can be clarified by rescaling climate gradients in terms of the underlying biological processes, with biotic interactions as a particularly important process. We tested this rescaling approach in a replicated field experiment where entire montane grassland communities were transplanted in the direction of expected temperature and/or precipitation change. In line with earlier work, we found considerable variation across sites in community dynamics in response to climate change. However, these complex context dependencies could be substantially reduced or eliminated by rescaling climate drivers in terms of proxies of plant−plant interactions. Specifically, bryophytes limited colonization by new species into local communities, whereas the cover of those colonists, along with bryophytes, were the primary drivers of local extinctions. These specific interactions are relatively understudied, suggesting important directions for future work in similar systems. More generally, the success of our approach in explaining and simplifying landscape-level variation in climate change responses suggests that developing and testing proxies for relevant underlying processes could be a fruitful direction for building more general models of biodiversity response to climate change.


Author(s):  
Eric Post

Rising temperatures are affecting organisms in all of Earth's biomes, but the complexity of ecological responses to climate change has hampered the development of a conceptually unified treatment of them. In a remarkably comprehensive synthesis, this book presents past, ongoing, and future ecological responses to climate change in the context of two simplifying hypotheses, facilitation and interference, arguing that biotic interactions may be the primary driver of ecological responses to climate change across all levels of biological organization. The author's synthesis and analyses of ecological consequences of climate change extend from the Late Pleistocene to the present, and through the next century of projected warming. The book's investigation is grounded in classic themes of enduring interest in ecology, but developed around novel conceptual and mathematical models of observed and predicted dynamics. Using stability theory as a recurring theme, the book argues that the magnitude of climatic variability may be just as important as the magnitude and direction of change in determining whether populations, communities, and species persist. It urges a more refined consideration of species interactions, emphasizing important distinctions between lateral and vertical interactions and their disparate roles in shaping responses of populations, communities, and ecosystems to climate change.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Murtala Bello Aliyu ◽  
Mohd Hafiz Mohd

Multi-species and ecosystem models have provided ecologist with an excellent opportunity to study the effects of multiple biotic interactions in an ecological system. Predation and mutualism are among the most prevalent biotic interactions in the multi-species system. Several ecological studies exist, but they are based on one-or two-species interactions, and in real life, multiple interactions are natural characteristics of a multi-species community. Here, we use a system of partial differential equations to study the combined effects of predation, mutualism and dispersal on the multi-species coexistence and community stability in the ecological system. Our results show that predation provided a defensive mechanism against the negative consequences of the multiple species interactions by reducing the net effect of competition. Predation is critical in the stability and coexistence of the multi-species community. The combined effects of predation and dispersal enhance the multiple species coexistence and persistence. Dispersal exerts a positive effect on the system by supporting multiple species coexistence and stability of community structures. Dispersal process also reduces the adverse effects associated with multiple species interactions. Additionally, mutualism induces oscillatory behaviour on the system through Hopf bifurcation. The roles of mutualism also support multiple species coexistence mechanisms (for some threshold values) by increasing the stable coexistence and the stable limit cycle regions. We discover that the stability and coexistence mechanisms are controlled by the transcritical and Hopf bifurcation that occurs in this system. Most importantly, our results show the important influences of predation, mutualism and dispersal in the stability and coexistence of the multi-species communities


2021 ◽  
Vol 9 ◽  
Author(s):  
Dries Bonte ◽  
Femke Batsleer ◽  
Sam Provoost ◽  
Valérie Reijers ◽  
Martijn L. Vandegehuchte ◽  
...  

Nature-based solutions to mitigate the impact of future climate change depend on restoring biological diversity and natural processes. Coastal foredunes represent the most important natural flood barriers along coastlines worldwide, but their area has been squeezed dramatically because of a continuing urbanization of coastlines, especially in Europe. Dune development is steered by the development of vegetation in interaction with sand fluxes from the beach. Marram grass (Calamagrostis arenaria, formerly Ammophila arenaria) is the main dune building species along most European coasts, but also in other continents where the species was introduced. Engineering of coastal dunes, for instance by building dunes in front of dikes, needs to be based on a solid understanding of the species’ interactions with the environment. Only quantitative approaches enable the further development of mechanistic models and coastal management strategies that encapsulate these biomorphogenic interactions. We here provide a quantitative review of the main biotic and physical interactions that affect marram grass performance, their interactions with sand fluxes and how they eventually shape dune development. Our review highlights that the species’ spatial organization is central to dune development. We further demonstrate this importance by means of remote sensing and a mechanistic model and provide an outlook for further research on the use of coastal dunes as a nature-based solution for coastal protection.


2019 ◽  
Author(s):  
Bailey McMeans ◽  
Kevin McCann ◽  
Matthew Guzzo ◽  
Timothy Bartley ◽  
Carling Bieg ◽  
...  

The ecological consequences of winter in freshwater systems are an understudied but rapidly emerging research area. Here, we argue that winter periods of reduced temperature and light (and potentially oxygen and resources) could play an underappreciated role in mediating the coexistence of species. This may be especially true for temperate and subarctic lakes, where seasonal changes in the thermal environment might fundamentally structure species interactions. With climate change already shortening ice-covered periods on temperate and polar lakes, consideration of how winter conditions shape biotic interactions is urgently needed. Using freshwater fishes in northern temperate lakes as a case study, we demonstrate how physiological trait differences (e.g., thermal preference, light sensitivity) drive differential behavioral responses to winter among competing species. Specifically, some species have a higher capacity for winter activity than others. Existing and new theory is presented to argue that such differential responses to winter can promote species coexistence. Importantly, if winter is a driver of niche differences that weaken competition between relative to within species, then shrinking winter periods could threaten coexistence by tipping the scales in favor of certain sets of species over others.


2010 ◽  
Vol 365 (1549) ◽  
pp. 2025-2034 ◽  
Author(s):  
Wim H. Van der Putten ◽  
Mirka Macel ◽  
Marcel E. Visser

Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change.


2021 ◽  
Author(s):  
Dries Bonte ◽  
Femke Batsleer ◽  
Sam Provoost ◽  
Valerie Reijers ◽  
Martijn Vandegehuchte ◽  
...  

Nature-based solutions to mitigate the impact of future climate change depend on restoring biological diversity and natural processes. Coastal foredunes represent the most important natural flood barriers along coastlines worldwide, but their area has been squeezed dramatically because of a continuing urbanisation of coastlines, especially in Europe. Dune development is steered by the development of vegetation in interaction with sand fluxes from the beach. Marram grass (Calamagrostis arenaria, formerly Ammophila arenaria) is the main dune building species along most European coasts, but also in other continents where the species was introduced. Engineering of coastal dunes, for instance by building dunes in front of dikes, needs to be based on a solid understanding of the species' interactions with the environment. Only quantitative approaches enable the further development of mechanistic models and coastal management strategies that encapsulate these biomorphogenic interactions. We here provide a quantitative review of the main biotic and physical interactions that affect marram grass performance, their interactions with sand fluxes and how they eventually shape dune development. Our review highlights that the species spatial organisation is central to dune development. We further demonstrate this importance by means of remote sensing and a mechanistic model and provide an outlook for further research on the use of coastal dunes as a nature-based solution for coastal protection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana I. García-Cervigón ◽  
Pedro F. Quintana-Ascencio ◽  
Adrián Escudero ◽  
Merari E. Ferrer-Cervantes ◽  
Ana M. Sánchez ◽  
...  

AbstractPopulation persistence is strongly determined by climatic variability. Changes in the patterns of climatic events linked to global warming may alter population dynamics, but their effects may be strongly modulated by biotic interactions. Plant populations interact with each other in such a way that responses to climate of a single population may impact the dynamics of the whole community. In this study, we assess how climate variability affects persistence and coexistence of two dominant plant species in a semiarid shrub community on gypsum soils. We use 9 years of demographic data to parameterize demographic models and to simulate population dynamics under different climatic and ecological scenarios. We observe that populations of both coexisting species may respond to common climatic fluctuations both similarly and in idiosyncratic ways, depending on the yearly combination of climatic factors. Biotic interactions (both within and among species) modulate some of their vital rates, but their effects on population dynamics highly depend on climatic fluctuations. Our results indicate that increased levels of climatic variability may alter interspecific relationships. These alterations might potentially affect species coexistence, disrupting competitive hierarchies and ultimately leading to abrupt changes in community composition.


Sign in / Sign up

Export Citation Format

Share Document