scholarly journals How Do Soil Resources Affect Herbivory in Tropical Plants Along Environmental Gradients? A Test Using Contrasting Congeneric Species

Author(s):  
Victor Diniz Pinto ◽  
Clara Cruz Vidart Badia ◽  
Glória Ramos Soares ◽  
Hildeberto Caldas Sousa ◽  
Tatiana Cornelissen ◽  
...  

Abstract Plants adapted to different habitats exhibit differences in functional traits and these characteristics are influenced by soil properties. We tested the hypothesis that soil resource availability influences the functional traits of plants, affecting therefore herbivory levels. We examined three Byrsonima plant species with different life forms that occurred across a distinct edaphic habitat along the Doce River Basin, South-eastern Brazil. We characterize habitats according to soil nutrient concentration and measured functional characteristics of crown architecture, leaf nutrients, sclerophylly, leaf area and leaf density. In addition, we evaluated how these variables influenced herbivory levels of congeneric plants. Our data have shown that species along a gradient of soil nutrients have functional characteristics influenced by habitat, which in turn affected herbivory levels. By comparing species from different life forms but within the same genus along a stress-gradient of continuous habitats, we described a corresponding gradient of plant functional traits and tissue consumption by herbivorous insects.

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1047 ◽  
Author(s):  
Konstantinos Stefanidis ◽  
Eva Papastergiadou

Freshwater ecologists have shown increased interest in assessing biotic responses to environmental change using functional community characteristics. With this article, we investigate the potential of using functional traits of the aquatic plants to assess eutrophication in freshwater lakes. To this end we collected macrophyte and physicochemical data from thirteen lakes in Greece and we applied a trait-based analysis to first identify discrete groups of macrophytes that share common functional traits and then to assess preliminary responses of these groups to water quality gradients. We allocated 11 traits that cover mostly growth form and morphological characteristics to a total of 33 macrophyte species. RLQ and fourth corner analysis were employed to explore potential relationships between species, trait composition and environmental gradients. In addition, a hierarchical cluster analysis was conducted to discriminate groups of plants that share common trait characteristics and then the position of the groups along the environmental gradients was assessed. The results showed total phosphorus, chlorophyll-a, conductivity, pH and Secchi disk depth as main drivers of the environmental gradients. Hierarchical cluster analysis showed a clear separation of macrophyte assemblages with discrete functional characteristics that appeared to associate with different environmental drivers. Thus, rooted submerged plants were related with higher Secchi disk depth, conductivity and alkalinity whereas rooted floating-leaved plants showed a preference for enriched waters with phosphorus and nitrogen. In addition, free-floating plants were related positively with nitrogen and increased pH. Although we did not identify specific trait patterns with environmental drivers, our findings indicate a differentiation of macrophytes based on their functional characteristics along water quality gradients. Overall, the presented results are encouraging for conducting future monitoring studies in lakes focused on the functional plant trait composition, as expanding the current approach to additional lakes and using quantifiable functional characteristics will provide more insight about the potential of trait-based approaches as ecological assessment systems.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 793
Author(s):  
Yaxiong Zheng ◽  
Fengying Guan ◽  
Shaohui Fan ◽  
Yang Zhou ◽  
Xiong Jing

Functional characteristics reflect plant strategies and adaptability to the changing environment. Determining the dynamics of these characteristics after harvesting would improve the understanding of forest response strategies. Strip clearcutting (SC) of moso bamboo forests, which significantly reduces the cutting cost, has been proposed to replace manual selective harvesting. A comparison of restoration features shows that 8 m is the optimal cutting width. However, the precise response of functional features to the resulting harvest-created gap remains unclear. In this study, three SC plots were selected which was performed in February 2019, with three unharvested plots as a control (C). The study focused on 10 functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), nitrogen/phosphorus ratio (N:P), wood density (WD), fine root biomass (FRB), specific fine root length (SRL), and root length density (RLD). A one-way ANOVA was used to compare differences in functional traits and soil nutrients between treatments. Strip clearcutting significantly reduced the soil organic carbon (SOC) and total nitrogen (TN) contents (p < 0.05). In terms of functional characteristics, SC significantly decreased LA and increased LNC, LPC, and N:P (p < 0.05). However, SC had no significant effect on fine root traits (p > 0.05). This study highlighted that root trait, soil content of total phosphorus (TP) and total potassium (TK) returned to the level of uncut plots after a year’s recovery. The LPC, LNC, and N:P were negatively correlated with LA, and LDMC and WD were negatively correlated with SLA, while the effect of SC on fine root traits was limited (p > 0.05). Fine root traits (FRB, RLD, and SRL) were positively associated with SOC, TN, and TP, but negatively correlated with TK. The changes in soil nutrient content caused by the removal of biomass were normal. Increased light and the rapid growth of new trees will increase nutrient regressions; therefore, these results further confirm the feasibility of SC.


2014 ◽  
Vol 29 (4) ◽  
pp. 579-588 ◽  
Author(s):  
Carlos P. Carmona ◽  
Cristina Rota ◽  
Francisco M. Azcárate ◽  
Begoña Peco

2021 ◽  
Author(s):  
Genda Singh ◽  
Bilas Singh

Abstract Background: Plants adapt to adverse environmental conditions accumulate varying concentrations of carbon (C), nitrogen (N) and sulfur (S) compounds to cope up with adverse climatic conditions. Carbon, N and S concentrations were determined in roots, stem and leaves of 33 species of trees/shrubs with objectives to observe the effects of life-form and plants functional traits, and select species with high concentration of these elements for their utilization in afforestation and medicinal uses. Results: Concentrations of C, N, and S and C: N and N: S ratio varied (P<0.05) between species, organs, life-forms and functional traits (legume vs non-legume). These variables were higher (except C in roots and stem) in trees than shrubs, and in leguminous than non-leguminous species. Non-leguminous species showed high S content and low N: S ratio. Antagonistic and synergistic relations were observed between C and N, and N and S concentration respectively. Species showed varying potential in assimilating carbon by regulating uptake and accumulation of these elements in different organs making them adapt to the habitats affected by drought and salinity. We observed strong plant size/life-form effects on C and N content and C: N and N: S ratios and of function on S content. Conclusions: Life-form/size and varying functions of the species determined C: nutrient ratio and elemental composition and helped adapting varying environmental stresses. This study assist in selecting species of high carbon, nitrogen and S content to utilize them in afforesting the areas affected by water and salt stresses, increased carbon storage and species with high S/N content in medicinal uses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomás A. Altamirano ◽  
Devin R. de Zwaan ◽  
José Tomás Ibarra ◽  
Scott Wilson ◽  
Kathy Martin

Abstract Mountains produce distinct environmental gradients that may constrain or facilitate both the presence of avian species and/or specific combinations of functional traits. We addressed species richness and functional diversity to understand the relative importance of habitat structure and elevation in shaping avian diversity patterns in the south temperate Andes, Chile. During 2010–2018, we conducted 2202 point-counts in four mountain habitats (successional montane forest, old-growth montane forest, subalpine, and alpine) from 211 to 1,768 m in elevation and assembled trait data associated with resource use for each species to estimate species richness and functional diversity and turnover. We detected 74 species. Alpine specialists included 16 species (22%) occurring only above treeline with a mean elevational range of 298 m, while bird communities below treeline (78%) occupied a mean elevational range of 1,081 m. Treeline was an inflection line, above which species composition changed by 91% and there was a greater turnover in functional traits (2–3 times greater than communities below treeline). Alpine birds were almost exclusively migratory, inhabiting a restricted elevational range, and breeding in rock cavities. We conclude that elevation and habitat heterogeneity structure avian trait distributions and community composition, with a diverse ecotonal sub-alpine and a distinct alpine community.


2014 ◽  
Vol 7 (4) ◽  
pp. 1251-1269 ◽  
Author(s):  
N. M. Fyllas ◽  
E. Gloor ◽  
L. M. Mercado ◽  
S. Sitch ◽  
C. A. Quesada ◽  
...  

Abstract. Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits – leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) varying from tree to tree – in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status. Sensitivity studies showed a clear importance of an accurate parameterisation of within- and between-stand trait variability on the fidelity of model predictions. For example, when functional tree diversity was not included in the model (i.e. with just a single plant functional type with mean basin-wide trait values) the predictive ability of the model was reduced. This was also the case when basin-wide (as opposed to site-specific) trait distributions were applied within each stand. We conclude that models of tropical forest carbon, energy and water cycling should strive to accurately represent observed variations in functionally important traits across the range of relevant scales.


Ecology ◽  
2013 ◽  
Vol 94 (7) ◽  
pp. 1626-1635 ◽  
Author(s):  
Kyle F. Edwards ◽  
Elena Litchman ◽  
Christopher A. Klausmeier

Flora ◽  
2018 ◽  
Vol 238 ◽  
pp. 32-42 ◽  
Author(s):  
Graciene Silva Mota ◽  
Giovana Rodrigues Luz ◽  
Nayara Mesquita Mota ◽  
Etiene Silva Coutinho ◽  
Maria das Dores Magalhães Veloso ◽  
...  

Plant Ecology ◽  
2021 ◽  
Vol 222 (11) ◽  
pp. 1281-1295
Author(s):  
Victor D. Pinto ◽  
Clara C. V. Badia ◽  
Glória R. Soares ◽  
Hildeberto C. de Sousa ◽  
Tatiana Cornelissen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document