scholarly journals Anti-Platelet Aggregation of Panax Notoginseng Triol Saponins by Regulating GP1BA for Ischemic Stroke Therapy

2021 ◽  
Author(s):  
Zhiyi Xu ◽  
Yang Xu ◽  
Xiaofang Xie ◽  
Yin Tian ◽  
Junhui Sui ◽  
...  

Abstract Background: Panax notoginseng triol saponins (PTS) has been used clinically for ischemic stroke therapy (IST) in China for more than seventeen years due to its anti-platelet aggregation and neuro-protective effects, but its mechanism of action is not fully understand. In this study, anti-platelet aggregation-related protein analysis and computer simulations of drug-protein binding interactions were performed to explore the mechanism of the effects of PTS against ischemic stroke in an ischemia reperfusion model. Methods: Three oral doses of PTS were administered in a model of middle cerebral artery occlusion (MCAO) in rats. Panax notoginseng total saponins (PNS) and a combination of PTS and aspirin were chosen for comparison. To evaluate therapeutic effects and explore possible mechanisms of anti-platelet aggregation, we measured cerebral infarct size and water content in brain tissue, histomorphological changes, expression of related factors (such as arachidonic acid metabolites) and platelet receptors in serum, as well as the binding affinity of PTS for platelet adhesion receptors. Results: Compared with PNS, PTS showed a stronger and more potent anti-platelet aggregation effect in MCAO model rats. The combination of PTS and aspirin could reduce adverse gastrointestinal effects by regulating the TXA2/PGI2 ratio. We demonstrated for the first time that PTS was able to regulate Glycoprotein Ib-α (GP1BA) in a model animal. The binding of ginsenoside Rg1 and GP1BA could form a stable structure. Moreover, PTS could reduce von Willebrand factor (VWF)-mediated platelet adhesion to damaged vascular endothelium, and thus enhance the probability of anti-platelet aggregation and anti-thrombosis under pathological conditions.Conclusions: Our results showed that GP1BA was closely related to the anti-platelet aggregation action of PTS, which provided new scientific and molecular evidence for its clinical application.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhi-yi Xu ◽  
Yang Xu ◽  
Xiao-fang Xie ◽  
Yin Tian ◽  
Jun-hui Sui ◽  
...  

Abstract Background Panax notoginseng triol saponins (PTS) has been used clinically for ischemic stroke therapy (IST) in China for more than 17 years due to its anti-platelet aggregation and neuro-protective effects, but its mechanism of action is not fully understand. In this study, anti-platelet aggregation-related protein analysis and computer simulations of drug-protein binding interactions were performed to explore the mechanism of the effects of PTS against ischemic stroke in an ischemia reperfusion model. Methods Three oral doses of PTS were administered in a model of middle cerebral artery occlusion (MCAO) in rats. Panax notoginseng total saponins (PNS) and a combination of PTS and aspirin were chosen for comparison. To evaluate therapeutic effects and explore possible mechanisms of anti-platelet aggregation, we measured cerebral infarct size and water content in brain tissue, histomorphological changes, expression of related factors (such as arachidonic acid metabolites) and platelet receptors in serum, as well as the binding affinity of PTS for platelet adhesion receptors. Results Compared with PNS, PTS showed a stronger and more potent anti-platelet aggregation effect in MCAO model rats. The combination of PTS and aspirin could reduce adverse gastrointestinal effects by regulating the TXA2/PGI2 ratio. We demonstrated for the first time that PTS was able to regulate Glycoprotein Ib-α (GP1BA) in a model animal. The binding of ginsenoside Rg1 and GP1BA could form a stable structure. Moreover, PTS could reduce von Willebrand factor (VWF)-mediated platelet adhesion to damaged vascular endothelium, and thus enhance the probability of anti-platelet aggregation and anti-thrombosis under pathological conditions. Conclusions Our results showed that GP1BA was closely related to the anti-platelet aggregation action of PTS, which provided new scientific and molecular evidence for its clinical application.


2020 ◽  
Author(s):  
Zhiyi Xu ◽  
Yang Xu ◽  
Xiaofang Xie ◽  
Yin Tian ◽  
Junhui Sui ◽  
...  

Abstract Background: Panax notoginseng triol saponins (PTS) has been used clinically for ischemic stroke therapy (IST) in China for more than sixteen years due to its anti-platelet aggregation and neuro-protective effects, but its mechanism of action is still unclear. In this study, anti-platelet aggregation-related protein analysis and computer simulations of drug-protein binding interactions were performed to explore the mechanism of the effects of PTS against ischemic stroke in an ischemia reperfusion model. Methods: Three oral doses of PTS were administered in a model of middle cerebral artery occlusion (MCAO) in rats. Panax notoginseng total saponins (PNS) and a combination of PTS and aspirin were chosen for comparison. To evaluate therapeutic effects and explore possible mechanisms of anti-platelet aggregation, we measured cerebral infarct size and water content in brain tissue, histomorphological changes, expression of related factors (such as arachidonic acid metabolites) and platelet receptors in serum, as well as the binding affinity of PTS for platelet adhesion receptors. Results: Compared with PNS, PTS showed a stronger and more extensive anti-platelet aggregation effect in MCAO model rats. The combination of PTS and aspirin could reduce adverse gastrointestinal effects by regulating the TXA2/PGI2 ratio. PTS was found to regulate Glycoprotein Ib-α (GP1BA) in a model animal for the first time, and they had a relatively stable binding ability, especially ginsenoside Rg1 and GP1BA, which could form a stable structure. However, PTS could reduce von Willebrand factor (VWF)-mediated platelet adhesion to damaged vascular endothelium, and thus enhance the probability of anti-platelet aggregation and anti-thrombosis under pathological conditions.Conclusions: Our results showed that GP1BA was closely related to the anti-platelet aggregation action of PTS, which provided new scientific evidence for its clinical application.


2020 ◽  
Author(s):  
Zhiyi Xu ◽  
Yang Xu ◽  
Xiaofang Xie ◽  
Yin Tian ◽  
Junhui Sui ◽  
...  

Abstract Background: Panax notoginseng triol saponins (PTS) has been used clinically for ischemic stroke therapy (IST) by potential anti-platelet aggregation and neuro-protective in China for more than sixteen years, but its mechanisms are still unclear. In this study, anti-platelet aggregation related protein analysis and computer simulations of drug-protein binding interactions were performed for exploring mechanism of PTS against ischemic stroke by ischemia reperfusion model. Methods: Three doses of PTS were administered orally in middle cerebral artery occlusion (MCAO) model rats; Panax notoginseng total saponins (PNS) and the combination of PTS and aspirin were chosen as comparison. The cerebral infarct size and water content in brain tissue, histomorphological observation, related factors and platelet receptor expression in serum, as well as binding affinity of PTS and platelet adhesion receptor were detected to evaluate therapeutic effect and explore possible mechanisms of anti-platelet aggregation. Results: Compared with PNS, PTS showed stronger and more extensive anti-platelet aggregation effect on MCAO model rats. The combination of PTS and aspirin might reduce the gastrointestinal adverse reactions by regulating TXA2/PGI2 ratio. However, PTS could reduce the chance of VWF-mediated platelet adhesion to damaged vascular endothelium, and thus enhance the probability of anti-platelet aggregation and anti-thrombosis under pathological conditions.Conclusion: Our results showed that GP1BA was closely related with anti-platelet aggregation action of PTS, which provided new scientific evidences for its clinical application.


2020 ◽  
Author(s):  
Jianzhao Chen ◽  
Yushuang Chai ◽  
Yuanfeng He ◽  
Jisheng Huang ◽  
Ting Wan ◽  
...  

Abstract Background : Angong Niuhuang Pill (ANP) is one of the most famous drugs to treat stroke in China, but there is no definite treatment period in drug instruction. In this study, we used middle cerebral artery occlusion (MCAO) model to evaluate its therapeutic effects of different treatment periods and studied its toxic effect in rats. Methods : Protective effect of ANP was observed in the cerebral ischemia-reperfusion model in rats; ANP (270 mg/kg) three different treatment period included 1 day, 4 days and 7 days. The observation period was 30 days. Therapeutic effect was evaluated by detecting neurological function, cerebral infraction volume, brain histology and cytokines. Three dose including 550, 1640, 4910 mg/kg were studied in toxicology study. The administration period was 30 days. Toxic effect was evaluated by detecting appearance, behavior, excrement character, food-intake, body weight, hematological parameters and biomarkers such as TBA, GSTα, Cystatin C, clusterin, GSH, S-100B and MBP. Results : Seven days treatment period of ANP had better effect than 1 day and 4 days treatment periods in rat MCAO model from neurological function scores, the volume of cerebral infarction, brain histology and the serum content of IL-1β, TNF-α and NO; the brain content of IL-1β and NO. The results of 30 days multiple dose toxicology study showed no animal death in all groups; in ANP 4910 mg/kg group, the kidney and liver coefficient increased about 10%, the body weight grew more slowly, the TBA increased slightly. There was no abnormal change in histology. These all recovered after drug withdraw for 8 weeks. Conclusion: Seven days treatment period of ANP had more protective effect than 1 day and 4 days treatment periods in ischemic stroke rat. No observed adverse effect level (NOAEL) of ANP was 1640 mg/kg; the safety margin of ANP was 270-1640 mg/kg. These data provided reference to modify drug instruction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Liu ◽  
Qiongling Zhang ◽  
Shunli Xiao ◽  
Zhengxiao Sun ◽  
Shilan Ding ◽  
...  

XueShuanTong (XST) comprising therapeutically active ginsenosides, a lyophilized extract of Panax notoginseng roots, is extensively used in traditional Chinese medicine to treat ischemic heart and cerebrovascular diseases. Our recent study shows that treatment with XST inhibits shear-induced thrombosis formation but the underlying mechanism remained unclear. This study aimed to investigate the hypothesis that XST inhibited shear-induced platelet aggregation via targeting the mechanosensitive Ca2+-permeable Piezo1 channel by performing platelet aggregation assay, Ca2+ imaging and Western blotting analysis. Exposure to shear at physiologically (1,000–2000 s−1) and pathologically related rates (4,000–6,000 s−1) induced platelet aggregation that was inhibited by treatment with GsMTx-4. Exposure to shear evoked robust Ca2+ responses in platelets that were inhibited by treatment with GsMTx-4 and conversely enhanced by treatment with Yoda1. Treatment with XST at a clinically relevant concentration (0.15 g L−1) potently inhibited shear-induced Ca2+ responses and platelet aggregation, without altering vWF-mediated platelet adhesion and rolling. Exposure to shear, while resulting in no effect on the calpain-2 expression in platelets, induced calpain-2-mediated cleavage of talin1 protein, which is known to be critical for platelet activation. Shear-induced activation of calpain-2 and cleavage of talin1 were attenuated by treatment with XST. Taken together, our results suggest that XST inhibits shear-induced platelet aggregation via targeting the Piezo1 channel to prevent Piezo1-mediated Ca2+ signaling and downstream calpain-2 and talin1 signal pathway, thus providing novel insights into the mechanism of the therapeutic action of XST on platelet aggregation and thrombosis formation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8543
Author(s):  
Sunhong Moon ◽  
Mi-Sook Chang ◽  
Seong-Ho Koh ◽  
Yoon Kyung Choi

The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Sun ◽  
Ping Wang ◽  
Ting Deng ◽  
Xingbao Tao ◽  
Bin Li ◽  
...  

With the increase of the aging population, the high mortality and disability rates caused by ischemic stroke are some of the major problems facing the world, and they dramatically burden the society. Panax notoginseng (Burk) F. H. Chen, a traditional Chinese medicine, is commonly used for promoting blood circulation and removing blood stasis, and its main bioactive components are Panax notoginseng saponins (PNS). Therefore, we performed a meta-analysis on focal cerebral ischemia-reperfusion animal models established with middle cerebral artery occlusion (MCAO) surgery to evaluate the therapeutic effect of PNS. We systematically searched the reports of PNS in MCAO animal experiments in seven databases. We assessed the study quality using two literature quality evaluation criteria; evaluated the efficacy of PNS treatment based on the outcomes of the neurological deficit score (NDS), cerebral infarct volume (CIV), and biochemical indicators via a random/fixed-effects model; and performed a subgroup analysis utilizing ischemia duration, drug dosage, intervention time, and administration duration. We also compared the efficacy of PNS with positive control drugs or combination treatment. As a result, we selected 14 eligible studies from the 3,581 searched publications based on the predefined exclusion-inclusion criteria. PNS were significantly associated with reduced NDS, reduced CIV, and inhibited release of the inflammatory factors IL-1β and TNF-α in the focal MCAO rat models. The PNS combination therapy outperformed the PNS alone. In addition, ischemia time, drug dosage, intervention time, and administration duration in the rat models all had significant effects on the efficacy of PNS. Although more high-quality studies are needed to further determine the clinical efficacy and guiding parameters of PNS, our results also confirmed that PNS significantly relieves the focal cerebral ischemia-reperfusion in rat models. In the animal trials, it was suggested that an early intervention had significant efficacy with PNS alone or PNS combination treatment at a dosage lower than 25 mg/kg or 100–150 mg/kg for 4 days or longer. These findings further guide the therapeutic strategy for clinical cerebral ischemic stroke.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Qiu-Yan Zhang ◽  
Zhi-Jun Wang ◽  
De-Miao Sun ◽  
Ying Wang ◽  
Peng Xu ◽  
...  

Stroke is a leading cause of morbidity and mortality globally. Leonurine (also named SCM-198), a compound extracted fromHerba leonuri, was effective on the prevention of various cardiovascular and brain diseases. The purpose of this study was to explore the possible therapeutic potential of SCM-198 against ischemia reperfusion injury and underlying mechanisms. In the in vivo transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could decrease infarct volume and improve neurological deficit by protecting against blood-brain barrier (BBB) breakdown. In the in vitro model of cell oxygen-glucose deprivation and reoxygenation (OGD/R), consistent results were obtained with decreased reactive oxygen species (ROS) production and maintained the BBB integrity. Further study demonstrated that SCM-198 increased the expression of histone deacetylase- (HDAC-) 4 which could inhibit NADPH oxidase- (NOX-) 4 and matrix metalloproteinase- (MMP-) 9 expression, resulting in the elevation of tight junction proteins, including claudin-5, occludin, and zonula occluden- (ZO-) 1. These results indicated SCM-198 protected BBB integrity by regulating the HDAC4/NOX4/MMP-9 tight junction pathway. Our findings provided novel insights into the protective effects and mechanisms of SCM-198 on ischemic stroke, indicating SCM-198 as a new class of potential drug against acute onset of ischemic stroke.


Author(s):  
W. H. Zucker ◽  
R. G. Mason

Platelet adhesion initiates platelet aggregation and is an important component of the hemostatic process. Since the development of a new form of collagen as a topical hemostatic agent is of both basic and clinical interest, an ultrastructural and hematologic study of the interaction of platelets with the microcrystalline collagen preparation was undertaken.In this study, whole blood anticoagulated with EDTA was used in order to inhibit aggregation and permit study of platelet adhesion to collagen as an isolated event. The microcrystalline collagen was prepared from bovine dermal corium; milling was with sharp blades. The preparation consists of partial hydrochloric acid amine collagen salts and retains much of the fibrillar morphology of native collagen.


1992 ◽  
Vol 68 (06) ◽  
pp. 694-700 ◽  
Author(s):  
Roy R Hantgan ◽  
Silvia C Endenburg ◽  
I Cavero ◽  
Gérard Marguerie ◽  
André Uzan ◽  
...  

SummaryWe have employed synthetic peptides with sequences corresponding to the integrin receptor-recognition regions of fibrinogen as inhibitors of platelet aggregation and adhesion to fibrinogen-and fibrin-coated surfaces in flowing whole blood, using a rectangular perfusion chamber at wall shear rates of 300 s–1 and 1,300 s–1. D-RGDW caused substantial inhibition of platelet aggregation and adhesion to fibrinogen and fibrin at both shear rates, although it was least effective at blocking platelet adhesion to fibrin at 300 s–1. RGDS was a weaker inhibitor, and produced a biphasic dose-response curve; SDRG was inactive. HHLGGAK-QAGDV partially inhibited platelet aggregation and adhesion to fibrin(ogen) at both shear rates. These results support the identification of an RGD-specific receptor, most likely the platelet integrin glycoprotein IIb: III a, as the primary receptor responsible for platelet: fibrin(ogen) adhesive interactions under flow conditions, and indicate that platelet adhesion to surface bound fibrin(ogen) is stabilized by multivalent receptor-ligand contacts.


Sign in / Sign up

Export Citation Format

Share Document