scholarly journals Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana.

Author(s):  
Majidah Hamid-Adiamoh ◽  
Davis Nwakanma ◽  
Isaac Sr ◽  
Alfred Amambua-Ngwa ◽  
Yaw A. Afrane

Abstract Background Recent reports of a change in the resting behaviour of malaria vectors, from predominantly indoor resting to outdoor resting following blood feeding, have been attributed to selection pressure from use of vector control tools such as indoor residual spraying and long-lasting insecticide-treated nets. Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed. This present study examined if the outdoor resting behaviour in the vector population, is random or indicative of a consistent preference of one resting site over the other. Methods Mark-release-recapture (MRR) experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from pit shelters, animal houses and granaries in two villages in Northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,630, 59%) and An. funestus complex (1,830, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were significantly captured and recaptured during rainy season ( Z = 6.579, P < 0.0001). Conclusions The results obtained suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.

2021 ◽  
Author(s):  
Majidah Hamid-Adiamoh ◽  
Davis Nwakanma ◽  
Isaac Sr ◽  
Alfred Amambua-Ngwa ◽  
Yaw A Afrane

Abstract BackgroundRecent reports of a change in the resting behaviour of malaria vectors, from predominantly indoor resting to outdoor resting following blood feeding, have been attributed to selection pressure from use of vector control tools such as indoor residual spraying and long-lasting insecticide-treated nets. Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed. This present study examined if the outdoor resting behaviour in the vector population, is random or indicative of a consistent preference of one resting site over the other. MethodsMark-release-recapture (MRR) experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from pit shelters, animal houses and granaries in two villages in Northern Ghana. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. ResultsA total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (59%) and An. funestus complex (41%) were marked and released. Overall, 31 (0.7%) mosquitoes (25 An. gambiae s.l. and 6 An. funestus complex) were recaptured mostly from outdoor location. Only 3 of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas the indoor-recaptured mosquitoes were mainly (3) An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 An. gambiae s.l. and 11 An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors.ConclusionsThe mosquitoes demonstrated the tendency to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.


2020 ◽  
Author(s):  
Majidah Hamid-Adiamoh ◽  
Alfred Amambua-Ngwa ◽  
Davis Nwakanma ◽  
Umberto D’Alessandro ◽  
Gordon A. Awandare ◽  
...  

Abstract Background Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. Methods F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)- 1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. Results Susceptibility of Anopheles coluzzii to deltamethrin 24hr post-exposure was significantly higher in indoor (mortality=5%) than outdoor (mortality=2.5%) populations (P=0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor=98%, outdoor=100%). Susceptibility to DDT was significantly higher in outdoor (mortality=9%) than indoor (mortality=0%) mosquitoes (P=0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor=90%, outdoor=95%. P=0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P=0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor=: 1.70/mg protein; Indoor=1.35/mg protein. P<0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P=0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). Conclusions The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Brian Bartilol ◽  
Irene Omedo ◽  
Charles Mbogo ◽  
Joseph Mwangangi ◽  
Martin K. Rono

AbstractMalaria transmission persists despite the scale-up of interventions such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). Understanding the entomological drivers of transmission is key for the design of effective and sustainable tools to address the challenge. Recent research findings indicate a shift in vector populations from the notorious Anopheles gambiae (s.s.) as a dominant vector to other species as one of the factors contributing to the persistence of malaria transmission. However, there are gaps in the literature regarding the minor vector species which are increasingly taking a lead role in malaria transmission. Currently, minor malaria vectors have behavioural plasticity, which allows their evasion of vector control tools currently in use. To address this, we have reviewed the role of Anopheles merus, a saltwater mosquito species that is becoming an important vector of malaria transmission along the East and Southern African coast. We performed a literature review from PubMed and Google Scholar and reviewed over 50 publications relating to An. merus's bionomics, taxonomy, spatial-temporal distribution and role in malaria transmission. We found that An. merus is an important vector of malaria and that it contributes to residual malaria transmission because of its exophilic tendencies, insecticide resistance and densities that peak during the dry seasons as the freshwater mosquitoes decline. Spatial and temporal studies have also shown that this species has increased its geographical range, densities and vectorial capacity over time. In this review, we highlight the resting behaviour and breeding habitats of this mosquito, which could be targeted for surveillance studies and control interventions.


2021 ◽  
Author(s):  
Thomas Syme ◽  
Martial Gbegbo ◽  
Dorothy Obuobi ◽  
Augustin Fongnikin ◽  
Abel Agbevo ◽  
...  

As the uptake of pyrethroid-PBO ITNs increases, their combination with IRS insecticides could become an operational reality in many malaria-endemic communities. Pirimiphos-methyl is a pro-insecticide requiring activation by mosquito cytochrome P450 enzymes to induce toxicity while PBO blocks activation of these enzymes in pyrethroid-resistant vector mosquitoes. PBO may thus antagonise the toxicity of pirimiphos-methyl IRS when combined with pyrethroid-PBO ITNs. The impact of combining two major brands of pyrethroid-PBO ITNs (Olyset Plus, PermaNet 3.0) with pirimiphos-methyl IRS (Actellic 300CS) was evaluated against pyrethroid-resistant Anopheles gambiae sl in two parallel experimental hut trials in southern Benin in comparison to bendiocarb IRS and each intervention alone. The wild vector population was resistant to pyrethroids but susceptible to pirimiphos-methyl and bendiocarb. PBO pre-exposure partially restored deltamethrin toxicity but not permethrin. Mosquito mortality in experimental huts was significantly improved in the combinations of bendiocarb IRS with Olyset Plus (33%) and PermaNet 3.0 (38%) compared to bendiocarb IRS alone (14 to 16%, p<0.001), demonstrating an additive effect. Conversely, mortality was significantly reduced in the combinations of pirimiphos-methyl IRS with Olyset Plus (59%) and PermaNet 3.0 (55%) compared to pirimiphos-methyl IRS alone (77 to 78%, p<0.001), demonstrating an antagonistic effect. Combining pirimiphos-methyl IRS with the pyrethroid-PBO ITNs provided significantly improved mosquito mortality (55 to 59%) compared to the pyrethroid-PBO ITNs alone (22 to 26%) and improved blood-feeding inhibition relative to the IRS alone. This study provided evidence of an antagonistic effect when pyrethroid-PBO ITNs were combined with pirimiphos-methyl IRS in the same household resulting in lower levels of vector mosquito mortality compared to the IRS alone. Pirimiphos-methyl IRS also showed potential to significantly enhance malaria control when deployed to complement pyrethroid-PBO ITNs in an area where PBO fails to fully restore susceptibility to pyrethroids.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245804
Author(s):  
Thomas Syme ◽  
Augustin Fongnikin ◽  
Damien Todjinou ◽  
Renaud Govoetchan ◽  
Martial Gbegbo ◽  
...  

Background Where resources are available, non-pyrethroid IRS can be deployed to complement standard pyrethroid LLINs with the aim of achieving improved vector control and managing insecticide resistance. The impact of the combination may however depend on the type of IRS insecticide deployed. Studies comparing combinations of pyrethroid LLINs with different types of non-pyrethroid IRS products will be necessary for decision making. Methods The efficacy of combining a standard pyrethroid LLIN (DuraNet®) with IRS insecticides from three chemical classes (bendiocarb, chlorfenapyr and pirimiphos-methyl CS) was evaluated in an experimental hut trial against wild pyrethroid-resistant Anopheles gambiae s.l. in Cové, Benin. The combinations were also compared to each intervention alone. WHO cylinder and CDC bottle bioassays were performed to assess susceptibility of the local An. gambiae s.l. vector population at the Cové hut site to insecticides used in the combinations. Results Susceptibility bioassays revealed that the vector population at Cové, was resistant to pyrethroids (<20% mortality) but susceptible to carbamates, chlorfenapyr and organophosphates (≥98% mortality). Mortality of wild free-flying pyrethroid resistant An. gambiae s.l. entering the hut with the untreated net control (4%) did not differ significantly from DuraNet® alone (8%, p = 0.169). Pirimiphos-methyl CS IRS induced the highest mortality both on its own (85%) and in combination with DuraNet® (81%). Mortality with the DuraNet® + chlorfenapyr IRS combination was significantly higher than each intervention alone (46% vs. 33% and 8%, p<0.05) demonstrating an additive effect. The DuraNet® + bendiocarb IRS combination induced significantly lower mortality compared to the other combinations (32%, p<0.05). Blood-feeding inhibition was very low with the IRS treatments alone (3–5%) but increased significantly when they were combined with DuraNet® (61% - 71%, p<0.05). Blood-feeding rates in the combinations were similar to the net alone. Adding bendiocarb IRS to DuraNet® induced significantly lower levels of mosquito feeding compared to adding chlorfenapyr IRS (28% vs. 37%, p = 0.015). Conclusions Adding non-pyrethroid IRS to standard pyrethroid-only LLINs against a pyrethroid-resistant vector population which is susceptible to the IRS insecticide, can provide higher levels of vector mosquito control compared to the pyrethroid net alone or IRS alone. Adding pirimiphos-methyl CS IRS may provide substantial improvements in vector control while adding chlorfenapyr IRS can demonstrate an additive effect relative to both interventions alone. Adding bendiocarb IRS may show limited enhancements in vector control owing to its short residual effect.


2019 ◽  
Author(s):  
John Paliga Masalu ◽  
Marceline Finda ◽  
Gerry F. Killeen ◽  
Halfan S. Ngowo ◽  
Polius G. Pinda ◽  
...  

Abstract Background Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. This compromises effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed protective efficacies of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin and respectively fitted to chairs and outdoor kitchens, against mosquitoes.Methods Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of eight households using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Field-collected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24h-mortality. Finally, WHO insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages.Results Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peri-domestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and only one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-76% while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl & bendiocarb) but resistant to pyrethroids commonly used on LLINs (deltamethrin & permethrin).Conclusion Most houses had actively-used peri-domestic outdoor spaces where exposure to mosquitoes occurred. The transfluthrin-treated chair and ribbons reduced outdoor-biting malaria vectors in these peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two new prototype formats for transfluthrin emanators, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne pathogens in areas where peri-domestic human activities are common.


2019 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  

AbstractBackgroundUnderstanding the interactions between increased insecticide resistance in field malaria vector populations and the subsequent resting behaviour patterns is important for planning adequate vector control measures in a specific context and sustaining the current vector interventions. The aim of this study was to investigate the resting behavior, host preference and infection with Plasmodium falciparum sporozoites by malaria vectors in different ecological settings of western Kenya with different levels of insecticide resistance.MethodsIndoor and outdoor resting Anopheline mosquitoes were sampled during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya. WHO tube bioassay was used to determine levels of phenotypic resistance of first generation offspring (F1 progeny) of malaria vectors resting indoors and outdoors to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for resistance mutations and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections.ResultsOverall, 3,566 female Anopheles mosquitoes were collected with Anopheles gambiae s.l [In Bungoma, An. gambiae s.s (90.9%), An arabiensis (7.6%) and in Kisian, An. gambiae s.s (38.9%), An. arabiensis (60.2%)] being the most abundant species (74.7%) followed by An. funestus s.l (25.3%). The majority of An. gambiae s.l (85.4 and 58%) and An. funestus (96.6 and 91.1%) were caught resting indoors in Bungoma and Kisian respectively.Vgsc-1014S was observed at a slightly higher frequency in An. gambiae s.s hereafter(An. gambiae) resting indoor than outdoor (89.7 vs 84.6% and 71.5 vs 61.1%) in Bungoma and Kisian respectively. For An. arabiensis, Vgsc-1014S was 18.2% indoor and outdoor (17.9%) in Kisian. In Bungoma, the Vgsc-1014S was only detected in An. arabiensis resting indoors with a frequency of 10%. The Vgsc-1014F mutation was only present in An. gambiae resting indoors from both sites, but at very low frequencies in Kisian compared to Bungoma (0.8 and 9.2% respectively. In Bungoma, the sporozoite rates for An. funestus, An. gambiae, and An. arabiensis resting indoors were 10.9, 7.6 and 3.4 % respectively. For outdoor resting, An. gambiae and An. arabiensis in Bungoma, the sporozoite rates were 4.7 and 2.9 % respectively.Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 8.6% and 4.2% for outdoors. In Kisian the sporozoite rate was 0.9% for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections.ConclusionThe study reports high densities of insecticide-resistant An. gambiae and An. funestus resting indoors and the persistence of malaria transmission indoors with high entomological inoculation rates (EIR) regardless of the use of Long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.


Author(s):  
I. A. Atting ◽  
N. D. Ekpo ◽  
M. E. Akpan ◽  
B. E. Bassey ◽  
M. J. Asuquo ◽  
...  

Development of resistance by different malaria vector populations to insecticides has become a big threat to malaria vector elimination. This study evaluated the susceptibility of Anopheles mosquito populations in Akwa Ibom State, Nigeria to permethrin (0.75%), deltamethrin (0.5%), lambdacyhalothrin (0.5%), alphacypermethrin (0.75%), Dichlorodiphenyltrichloethane (DDT), propoxur, bendiocarb and pirimiphosmethylin in World Health Organization (WHO) test tubes following standard protocols. The mosquitoes were obtained as aquatic forms and reared under laboratory conditions to adults. The adults were subjected to WHO susceptibility bioassays following standard procedures. Malaria vectors across the study sites were resistant to permethrin, deltamethrin, lambdacyhalothrin and alphacypermethrin insecticides. Full susceptibility to propoxur and bendiocarb was recorded across the sites. Full susceptibility to pirimiphosmethyl was recorded in populations from three sites. Nevertheless, population of the malaria vectors collected from Oron was resistant to pirimiphosmethyl. KDT50 and KDT95 estimated for each insecticide using a log-time probit model revealed that knockdown was more rapid for deltamethrin, lambdacyhalothrin, alphacypermethrin, propoxur, bendiocarb and pirimiphosmethyl than for DDT and permethrin  across the study sites. Morphological identification of all the mosquito samples used revealed that they were female Anopheles gambiae s.l. Sustained susceptibility of malaria vectors to pyrethriod is necessary for successful malaria control with insecticide treated nets and Indoor Residual Spraying (IRS). Emergence of focal points with insecticide resistance gives serious concern especially with the scale-up in distribution of pyrethriod treated nets to these areas. This may increase selection pressures due to overexposure. Further study to identify the exact resistance mechanism(s) of malaria vectors from these sites is recommended.


2020 ◽  
Author(s):  
Tilahun Adugna Wassie ◽  
Delensaw Yewhelew Gebru ◽  
Emana Emana Getu (Prof.) Degaga

Abstract Background: Malaria is the leading health problem in Ethiopia. The country has been prevented malaria vectors mostly using long-lasting insecticide-treated nets, the application of indoor residual spraying chemicals, and source reductions. Before interventions, identifying the responsible malaria vector in disease transmission (sporozoite rate) is very vital; hence, the present study was designed to assess species diversity and entomological inoculation rate of Anopheles mosquito in Bure district, Northwest Ethiopia. Methods: Adult mosquitoes were collected from July 2015 to June 2016 using the center for disease control and prevention light traps, pyrethrum spray catches, and artificial pit shelters. Mosquitoes were morphologically identified. Following this, An. gambiae s.l was identified molecularly. Head-thorax sporozoite infectivity of the adult female Anopheles mosquitoes was assessed using enzyme-linked immunosorbent assays. Results: Morphologically, nine species of the genus Anopheles were identified in the three villages, composed of Anopheles demeilloni, An. arabiensis, An. funestus, An. coustani, An. squamosus, An. cinereus, An. pharoensis, An. rupicolus, and An. natalensis. Of these species, An. demeilloni was the most predominant, whereas An. cinereus, An. rupicolus and An. natalensis were the least representative species (p < 0.0001). Greater number of adult Anopheles mosquitoes were collected in Shnebekuma, non-irrigated villages than non- irrigated village (Workmidr) and irrigated village (Bukta) (p < 0.0001). The overall Plasmodium infective rate (P. falciparum and P. vivax) in the district was 0.31%. The overall annual sporozoite rate in non-irrigated villages (Shnebekuma and Workmidr) was 0.35%, whereas zero in irrigated village (Bukta). The overall estimated EIR of Anopheles mosquitoes was 5.7 infectious bites /person /year for both P. falciparum and P. vivax in the district. The annual EIR Anopheles species in non-irrigated villages was 5.65 ib/p/y, which was higher than irrigated village (0 ib/p/y). Conclusions: Both the primary (An. arabiensis) and secondary (An. funestus and An. pharoensis) malaria vectors of Ethiopia were identified in the three villages. Three of Anopheles species, An. arabiensis, An. funestus, and An. coustani were found to be infected only in irrigated villages. Source reduction and proper usage of long-lasting insecticide nets and indoor residual spraying could be implemented in the non- irrigated villages to cut the vector abundance and EIR.


2019 ◽  
Author(s):  
April Monroe ◽  
Dickson Msaky ◽  
Samson Kiware ◽  
Brian Tarimo ◽  
Sarah Moore ◽  
...  

Abstract Background: Zanzibar provides a good case study for malaria elimination. The islands have experienced a dramatic reduction in malaria burden since the introduction of effective vector control interventions and case management. Malaria prevalence has now been maintained below 1% for the past decade and the islands can feasibly aim for elimination. Methods: To better understand factors that may contribute to remaining low-level malaria transmission in Zanzibar, layered human behavioral and entomological research was conducted between December 2016 and December 2017 in 135 randomly selected households across six administrative wards selected based on high annual parasite incidence and receipt of indoor residual spraying (IRS). The study included: 1) household surveys, 2) structured household observations of nighttime activity and sleeping patterns, and 3) paired indoor and outdoor mosquito collections. Entomological and human behavioral data were integrated to provide weighted estimates of exposure to vector bites, accounting for proportions of people indoors or outdoors, and protected by insecticide-treated nets (ITNs) each hour of the night. Results: The percentage of study participants outdoors and away from home peaked in the early evening with a higher percentage of males observed away throughout the night compared to females. Overall, 92% of female Anopheles mosquitoes were caught in the rainy season compared to 8% in the dry season and 72% were caught outdoors compared to 28% indoors. Observed levels of ITN use were estimated to prevent an average of 42% of exposure to vector bites of all exposure that would otherwise occur. For ITN users, use of an ITN while asleep prevented an estimated two-thirds (66%) of exposure to vector bites and nearly three quarters (73%) of remaining exposure was estimated to occur outdoors. Discussion/Conclusions: This study identified gaps in malaria prevention in Zanzibar with results directly applicable for improving ongoing program activities. While overall biting risk was low, the most notable finding was that current levels of ITN use are estimated to prevent less than half of exposure to malaria vector bites. Variation in ITN use across sites suggests that additional gains could be made through targeted social and behavior change interventions in sites with low levels of ITN use, with additional focus on increasing net use in the rainy season when biting risk is higher. However, even for ITN users, gaps in protection remain, with a majority of exposure to vector bites occurring outdoors before going to sleep. Supplemental interventions targeting outdoor exposure to malaria vectors, and groups that may be at increased risk of exposure to malaria vectors, should be explored. Interventions such as larval source management, which can reduce both indoor and outdoor-biting vector populations, could also be considered.


Sign in / Sign up

Export Citation Format

Share Document