entomological inoculation rate
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benjamin Amoah ◽  
Robert S McCann ◽  
Alinune N Kabaghe ◽  
Monicah Mburu ◽  
Michael G Chipeta ◽  
...  

Background:Monitoring malaria transmission is a critical component of efforts to achieve targets for elimination and eradication. Two commonly monitored metrics of transmission intensity are parasite prevalence (PR) and the entomological inoculation rate (EIR). Comparing the spatial and temporal variations in the PR and EIR of a given geographical region and modelling the relationship between the two metrics may provide a fuller picture of the malaria epidemiology of the region to inform control activities.Methods:Using geostatistical methods, we compare the spatial and temporal patterns of Plasmodium falciparum EIR and PR using data collected over 38 months in a rural area of Malawi. We then quantify the relationship between EIR and PR by using empirical and mechanistic statistical models.Results:Hotspots identified through the EIR and PR partly overlapped during high transmission seasons but not during low transmission seasons. The estimated relationship showed a 1-month delayed effect of EIR on PR such that at lower levels of EIR, increases in EIR are associated with rapid rise in PR, whereas at higher levels of EIR, changes in EIR do not translate into notable changes in PR.Conclusions:Our study emphasises the need for integrated malaria control strategies that combine vector and human host managements monitored by both entomological and parasitaemia indices.Funding:This work was supported by Stichting Dioraphte grant number 13050800.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
P. Doumbe-Belisse ◽  
E. Kopya ◽  
C. S. Ngadjeu ◽  
N. Sonhafouo-Chiana ◽  
A. Talipouo ◽  
...  

AbstractSub-Saharan Africa is registering one of the highest urban population growth across the world. It is estimated that over 75% of the population in this region will be living in urban settings by 2050. However, it is not known how this rapid urbanization will affect vector populations and disease transmission. The present study summarizes findings from studies conducted in urban settings between the 1970s and 2020 to assess the effects of urbanization on the entomological inoculation rate pattern and anopheline species distribution. Different online databases such as PubMed, ResearchGate, Google Scholar, Google were screened. A total of 90 publications were selected out of 1527. Besides, over 200 additional publications were consulted to collate information on anopheline breeding habitats and species distribution in urban settings. The study confirms high malaria transmission in rural compared to urban settings. The study also suggests that there had been an increase in malaria transmission in most cities after 2003, which could also be associated with an increase in sampling, resources and reporting. Species of the Anopheles gambiae complex were the predominant vectors in most urban settings. Anopheline larvae were reported to have adapted to different aquatic habitats. The study provides updated information on the distribution of the vector population and the dynamic of malaria transmission in urban settings. The study also highlights the need for implementing integrated control strategies in urban settings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christophe Antonio-Nkondjio ◽  
P. Doumbe-Belisse ◽  
L. Djamouko-Djonkam ◽  
C. S. Ngadjeu ◽  
A. Talipouo ◽  
...  

AbstractThe rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fixed and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied every 2 weeks in all standing water collection points. The anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14–0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment.


2021 ◽  
Author(s):  
Christophe Antonio-Nkondjio ◽  
Patricia Doumbe-Belisse ◽  
Landre Djamouko-Djonkam ◽  
Carmene Sandra Ngadjeu ◽  
Abdou Talipouo ◽  
...  

Abstract The rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fix and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax®G combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied twice per month in all standing water collection points. The biting anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of over 85% of habitats with anopheline larvae. The application of the larvicide also resulted in a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14–0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study also assessed the impact of the microbial larvicide on non-target organisms and registered no significant impact of the larvicide VectoMax on the aquatic microfauna diversity. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment.


2021 ◽  
Author(s):  
Benjamin Amoah ◽  
Robert S. McCann ◽  
Alinune N. Kabaghe ◽  
Monicah Mburu ◽  
Michael G. Chipeta ◽  
...  

AbstractMonitoring malaria transmission is a critical component of efforts to achieve targets for elimination and eradication. Two commonly monitored metrics of transmission intensity are parasite prevalence (PR) and the entomological inoculation rate (EIR). Using geostatistical methods, we investigate the relationship between Plasmodium falciparum PR and EIR using data collected over 38 months in a rural area of Malawi. Our results indicate that hotspots identified through the EIR and PR partly overlapped during high transmission seasons but not during low transmission seasons. The estimated relationship showed a one-month delayed effect of EIR on PR such that at low transmission levels increases in EIR are associated with rapid rise in PR, but at high transmission levels, decreases in EIR do not translate into notable reductions in PR. Our study emphasises the need for integrated malaria control strategies that combines vector and human host managements monitored by both entomological and parasitaemia indices.


2020 ◽  
Vol 10 (23) ◽  
pp. 8696
Author(s):  
João Sequeira ◽  
Jorge Louçã ◽  
António M. Mendes ◽  
Pedro G. Lind

Using an agent-based model of malaria, we present numerical evidence that in communities of individuals having an affinity varying within a broad range of values, disease transmission may increase up to 300%. Moreover, our findings provide new insight into how to combine different strategies for the prevention of malaria transmission. In particular, we uncover a relationship between the level of heterogeneity and the level of conventional and unconventional anti-malarial drug administration (ivermectin and gametocidal agents), which, when taken together, will define a control parameter, tuning between disease persistence and elimination. Finally, we also provide evidence that the entomological inoculation rate, as well as the product between parasite and sporozoite rates are both good indicators of malaria incidence in the presence of heterogeneity in disease transmission and may configure a possible improvement in that setting, upon classical standard measures such as the basic reproductive number.


2020 ◽  
Author(s):  
Tilahun Adugna Wassie ◽  
Delensaw Yewhelew Gebru ◽  
Emana Emana Getu (Prof.) Degaga

Abstract Background: Malaria is the leading health problem in Ethiopia. The country has been prevented malaria vectors mostly using long-lasting insecticide-treated nets, the application of indoor residual spraying chemicals, and source reductions. Before interventions, identifying the responsible malaria vector in disease transmission (sporozoite rate) is very vital; hence, the present study was designed to assess species diversity and entomological inoculation rate of Anopheles mosquito in Bure district, Northwest Ethiopia. Methods: Adult mosquitoes were collected from July 2015 to June 2016 using the center for disease control and prevention light traps, pyrethrum spray catches, and artificial pit shelters. Mosquitoes were morphologically identified. Following this, An. gambiae s.l was identified molecularly. Head-thorax sporozoite infectivity of the adult female Anopheles mosquitoes was assessed using enzyme-linked immunosorbent assays. Results: Morphologically, nine species of the genus Anopheles were identified in the three villages, composed of Anopheles demeilloni, An. arabiensis, An. funestus, An. coustani, An. squamosus, An. cinereus, An. pharoensis, An. rupicolus, and An. natalensis. Of these species, An. demeilloni was the most predominant, whereas An. cinereus, An. rupicolus and An. natalensis were the least representative species (p < 0.0001). Greater number of adult Anopheles mosquitoes were collected in Shnebekuma, non-irrigated villages than non- irrigated village (Workmidr) and irrigated village (Bukta) (p < 0.0001). The overall Plasmodium infective rate (P. falciparum and P. vivax) in the district was 0.31%. The overall annual sporozoite rate in non-irrigated villages (Shnebekuma and Workmidr) was 0.35%, whereas zero in irrigated village (Bukta). The overall estimated EIR of Anopheles mosquitoes was 5.7 infectious bites /person /year for both P. falciparum and P. vivax in the district. The annual EIR Anopheles species in non-irrigated villages was 5.65 ib/p/y, which was higher than irrigated village (0 ib/p/y). Conclusions: Both the primary (An. arabiensis) and secondary (An. funestus and An. pharoensis) malaria vectors of Ethiopia were identified in the three villages. Three of Anopheles species, An. arabiensis, An. funestus, and An. coustani were found to be infected only in irrigated villages. Source reduction and proper usage of long-lasting insecticide nets and indoor residual spraying could be implemented in the non- irrigated villages to cut the vector abundance and EIR.


Data ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 31
Author(s):  
Edmund I. Yamba ◽  
Adrian M. Tompkins ◽  
Andreas H. Fink ◽  
Volker Ermert ◽  
Mbouna D. Amelie ◽  
...  

A comprehensive literature review was conducted to create a new database of 197 field surveys of monthly malaria Entomological Inoculation Rates (EIR), a metric of malaria transmission intensity. All field studies provide data at a monthly temporal resolution and have a duration of at least one year in order to study the seasonality of the disease. For inclusion, data collection methodologies adhered to a specific standard and the location and timing of the measurements were documented. Auxiliary information on the population and hydrological setting were also included. The database includes measurements that cover West and Central Africa and the period from 1945 to 2011, and hence facilitates analysis of interannual transmission variability over broad regions.


2019 ◽  
Vol 57 (2) ◽  
pp. 568-584
Author(s):  
Vardayani Ratti ◽  
Dorothy I Wallace

Abstract A model is developed of malaria (Plasmodium falciparum) transmission in vector (Anopheles gambiae) and human populations that include the capacity for both clinical and parasite suppressing immunity. This model is coupled with a population model for Anopheles gambiae that varies seasonal with temperature and larval habitat availability. At steady state, the model clearly distinguishes uns hypoendemic transmission patterns from stable hyperendemic and holoendemic patterns of transmission. The model further distinguishes hyperendemic from holoendemic disease based on seasonality of infection. For hyperendemic and holoendemic transmission, the model produces the relationship between entomological inoculation rate and disease prevalence observed in the field. It further produces expected rates of immunity and prevalence across all three endemic patterns. The model does not produce mesoendemic transmission patterns at steady state for any parameter choices, leading to the conclusion that mesoendemic patterns occur during transient states or as a result of factors not included in this study. The model shows that coupling the effect of varying larval habitat availability with the effects of clinical and parasite-suppressing immunity is enough to produce known patterns of malaria transmission.


Sign in / Sign up

Export Citation Format

Share Document