scholarly journals Comparative Performance Analysis of Lead-Free Perovskites Solar Cells by Numerical Simulation

Author(s):  
Shristy Srivast ◽  
Anand Kumar Singh ◽  
Prashant Kumar ◽  
Basudev Pradhan

Abstract Research of lead-free perovskite based solar cells has gained speedy and growing attention with urgent intent to eliminate toxic lead in perovskite materials. The main purpose of this work is to supplement the research progress with comparative­­ analysis of different lead-free perovskite based solar cells by numerical simulation method using solar cell capacitance simulator (SCAPS-1D) software. In this work, the device simulation is carried out in the n-i-p configuration of FTO/[6,6]-Phenyl-C61-butyric acidmethyl ester (PCBM) /Perovskite layer/ Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine(PTAA)/Au using six different lead-free perovskite materials. The impact of different perovskite materials layers including hole and electron transport layer thickness, doping concentration on solar cell performances has thoroughly been investigated and optimized. CsSnI3 based perovskite solar cell shows the highest power conversion efficiency of 28.97 % among all the lead-free perovskite based devices. This clearly indicates that it’s possible to achieve high-performance lead-free perovskite solar cells experimentally at par with lead based perovskite solar cells in future research.

2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5741
Author(s):  
Marwa. S. Salem ◽  
Ahmed Shaker ◽  
Abdelhalim Zekry ◽  
Mohamed Abouelatta ◽  
Adwan Alanazi ◽  
...  

In this work, we report on the effect of substituting the active intrinsic i-layer on a conventional pin structure of lead-free perovskite solar cell (PSC) by a homo p-n junction, keeping the thickness of the active layer constant. It is expected that when the active i-layer is substituted by a p-n homo junction, one can increase the collection efficiency of the photo-generated electrons and holes due to the built-in electric field of the homo junction. The impact of the technological and physical device parameters on the performance parameters of the solar cell have been worked out. It was found that p-side thickness must be wider than the n-side, while its acceptor concentration should be slightly lower than the donor concentration of the n-side to achieve maximum efficiency. In addition, different absorber types, namely, i-absorber, n-absorber and p-absorber, are compared to the proposed pn-absorber, showing a performance-boosting effect when using the latter. Moreover, the proposed structure is made without a hole transport layer (HTL) to avoid the organic issues of the HTL materials. The back metal work function, bulk trap density and ETL material are optimized for best performance of the HTL-free structure, giving Jsc = 26.48, Voc = 0.948 V, FF = 77.20 and PCE = 19.37% for AM1.5 solar spectra. Such results highlight the prospective of the proposed structure and emphasize the importance of using HTL-free solar cells without deteriorating the efficiency. The solar cell is investigated by using SCAPS simulator.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Rare Metals ◽  
2017 ◽  
Vol 37 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Gong-Ping Mao ◽  
Wei Wang ◽  
Sen Shao ◽  
Xiao-Jun Sun ◽  
Shi-An Chen ◽  
...  

2019 ◽  
Vol 43 (18) ◽  
pp. 7130-7135 ◽  
Author(s):  
Xiaomeng Zhu ◽  
Jing Sun ◽  
Shuai Yuan ◽  
Ning Li ◽  
Zhiwen Qiu ◽  
...  

The solar cell with carbon QDs-doped PCBM as its electron transporting layer shows the highest PCE of 18.1%.


Rare Metals ◽  
2020 ◽  
Author(s):  
Gong-Ping Mao ◽  
Wei Wang ◽  
Sen Shao ◽  
Xiao-Jun Sun ◽  
Shi-An Chen ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong In Kim ◽  
Ji Won Lee ◽  
Rak Hyun Jeong ◽  
Jin-Hyo Boo

AbstractOver the past number of years, the power conversion efficiency of perovskite solar cells has remained at 25.5%, reflecting a respectable result for the general incorporation of organometallic trihalide perovskite solar cells. However, perovskite solar cells still suffer from long-term stability issues. Perovskite decomposes upon exposure to moisture, thermal, and UV-A light. Studies related to this context have remained ongoing. Recently, research was mainly conducted on the stability of perovskite against non-radiative recombination. This study improved a critical instability in perovskite solar cells arising from non-radiative recombination and UV-A light using a passivation layer. The passivation layer comprised a polyaniline (PANI) polymer as an interfacial modifier inserted between the active layer and the electron transport layer. Accordingly, the UV-A light did not reach the active layer and confined the Pb2+ ions at PANI passivation layer. This study optimized the perovskite solar cells by controlling the concentration, thickness and drying conditions of the PANI passivation layer. As a result, the efficiency of the perovskite solar cell was achieved 15.1% and showed over 84% maintain in efficiency in the ambient air for one month using the 65 nm PANI passivation layer.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 121 ◽  
Author(s):  
Lung-Chien Chen ◽  
Ching-Ho Tien ◽  
Zong-Liang Tseng ◽  
Jun-Hao Ruan

We describe a method to enhance power conversion efficiency (PCE) of MAPbI3 perovskite solar cell by inserting a FAPbX3 perovskite quantum dots (QD-FAPbX3) layer. The MAPbI3 and QD-FAPbX3 layers were prepared using a simple, rapid spin-coating method in a nitrogen-filled glove box. The solar cell structure consists of ITO/PEDOT:PSS/MAPbI3/QD-FAPbX3/C60/Ag, where PEDOT:PSS, MAPbI3, QD-FAPbX3, and C60 were used as the hole transport layer, light-absorbing layer, absorption enhance layer, and electron transport layer, respectively. The MAPbI3/QD-FAPbX3 solar cells exhibit a PCE of 7.59%, an open circuit voltage (Voc) of 0.9 V, a short-circuit current density (Jsc) of 17.4 mA/cm2, and a fill factor (FF) of 48.6%, respectively.


2021 ◽  
Vol 34 (1) ◽  
pp. 58-63
Author(s):  
Naman Shukla ◽  
Dharamlal Prajapati ◽  
Sanjay Tiwari

Perovskite solar cells fabricated with inexpensive and simple technology exhibits high efficiency has witnessed worldwide boom in research. The optimization of solar cell can be done through modeling and simulation. The optical and electrical modeling are the ways to optimize different parameter such as thickness, defect density, doping density and material selection for fabricating stable and highly efficient perovskite solar cells. In this research work, electrical modeling of solar cell is done throughSolar Cell Capacitance Simulator(SCAPS-1D).The architecture of the solar cell is n-i-p device structure. CH3NH3PbI3-xClx acts as light absorber active layer, TiO2 as electron transport layer and Spiro-OMeTADas hole transport layer with device structure FTO/ TiO2/ CH3NH3PbI3-xClx/ Spiro-OMeTAD/Au. The open circuit voltage Voc, short circuit current density Isc, fill factor and power conversion efficiency are 1.28 V, 21.63 mA/cm2, 0.78 and 21.53% respectively. The result showed that the optimize parameter can be applied for fabrication of the solar cell experimentally. Various metal contact materials of the anodeare also studied and analyzed.


Sign in / Sign up

Export Citation Format

Share Document