scholarly journals Dark matter density extraction using Convolutional Neural Networks

Author(s):  
Pratik Dongre

Abstract Ever since its discovery back in 1964 Cosmic Microwave Background (CMB) has been of great interest to cosmologists and played a crucial role in understanding and studying the early universe .One of the most interesting topic of current interest is dark matter and its existence is by now well established. By analyzing the CMB data we can estimate the dark matter density of the universe.With vast amount of astronomical data already present and a more vast amount which is to come in future, Machine Learning techniques can provide a variety of benefits in astrophysical and cosomological research. Here I explore the use of deep learning to estimate dark matter density. I have used convolutional neural networks in this paper. I have used simulated CMB temprature maps as a dataset to train the neural networks and correlate the dark matter density from the power spectrum of the corrseponding simlutaed CMB temprature map.

2017 ◽  
Vol 12 (S330) ◽  
pp. 255-258
Author(s):  
Hamish Silverwood ◽  
Sofia Sivertsson ◽  
Justin Read ◽  
Gianfranco Bertone ◽  
Pascal Steger

AbstractWe present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwoodet al.(2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data usingMultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbenderet al.(2015), yielding a result of ρDM= 0.46+0.07−0.09GeV cm−3= 0.012+0.001−0.002M⊙pc−3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1581
Author(s):  
Jimy Oblitas ◽  
Jezreel Mejia ◽  
Miguel De-la-Torre ◽  
Himer Avila-George ◽  
Lucía Seguí Gil ◽  
...  

Although knowledge of the microstructure of food of vegetal origin helps us to understand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)—when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbita pepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. The comparison showed that the classifiers based on CNN produced a better fit, obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.


2016 ◽  
Vol 458 (4) ◽  
pp. 3839-3850 ◽  
Author(s):  
Qiran Xia ◽  
Chao Liu ◽  
Shude Mao ◽  
Yingyi Song ◽  
Lan Zhang ◽  
...  

2010 ◽  
Vol 514 ◽  
pp. A47 ◽  
Author(s):  
S. Pasetto ◽  
E. K. Grebel ◽  
P. Berczik ◽  
R. Spurzem ◽  
W. Dehnen

2014 ◽  
Vol 10 (S306) ◽  
pp. 258-261
Author(s):  
Metin Ata ◽  
Francisco-Shu Kitaura ◽  
Volker Müller

AbstractWe study the statistical inference of the cosmological dark matter density field from non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a Bayesian posterior sampling computer-code solving this problem and tested it with mock data based onN-body simulations.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012013
Author(s):  
Priyadarshini Chatterjee ◽  
Dutta Sushama Rani

Abstract Automated diagnosis of diseases in the recent years have gain lots of advantages and potential. Specially automated screening of cancers has helped the clinicians over the time. Sometimes it is seen that the diagnosis of the clinicians is biased but automated detection can help them to come to a proper conclusion. Automated screening is implemented using either artificial inter connected system or convolutional inter connected system. As Artificial neural network is slow in computation, so Convolutional Neural Network has achieved lots of importance in the recent years. It is also seen that Convolutional Neural Network architecture requires a smaller number of datasets. This also provides them an edge over Artificial Neural Networks. Convolutional Neural Networks is used for both segmentation and classification. Image dissection is one of the important steps in the model used for any kind of image analysis. This paper surveys various such Convolutional Neural Networks that are used for medical image analysis.


2016 ◽  
Vol 456 (4) ◽  
pp. 3542-3552 ◽  
Author(s):  
Edouard Tollet ◽  
Andrea V. Macciò ◽  
Aaron A. Dutton ◽  
Greg S. Stinson ◽  
Liang Wang ◽  
...  

2020 ◽  
Vol 495 (4) ◽  
pp. 4828-4844 ◽  
Author(s):  
Rui Guo ◽  
Chao Liu ◽  
Shude Mao ◽  
Xiang-Xiang Xue ◽  
R J Long ◽  
...  

ABSTRACT We apply the vertical Jeans equation to the kinematics of Milky Way stars in the solar neighbourhood to measure the local dark matter density. More than 90 000 G- and K-type dwarf stars are selected from the cross-matched sample of LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) fifth data release and Gaia second data release for our analyses. The mass models applied consist of a single exponential stellar disc, a razor thin gas disc, and a constant dark matter density. We first consider the simplified vertical Jeans equation that ignores the tilt term and assumes a flat rotation curve. Under a Gaussian prior on the total stellar surface density, the local dark matter density inferred from Markov chain Monte Carlo simulations is $0.0133_{-0.0022}^{+0.0024}\ {\rm M}_{\odot }\, {\rm pc}^{-3}$. The local dark matter densities for subsamples in an azimuthal angle range of −10° < ϕ < 5° are consistent within their 1σ errors. However, the northern and southern subsamples show a large discrepancy due to plateaux in the northern and southern vertical velocity dispersion profiles. These plateaux may be the cause of the different estimates of the dark matter density between the north and south. Taking the tilt term into account has little effect on the parameter estimations and does not explain the north and south asymmetry. Taking half of the difference of σz profiles as unknown systematic errors, we then obtain consistent measurements for the northern and southern subsamples. We discuss the influence of the vertical data range, the scale height of the tracer population, the vertical distribution of stars, and the sample size on the uncertainty of the determination of the local dark matter density.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Thomas Lacroix ◽  
Céline Bœhm ◽  
Joseph Silk

Sign in / Sign up

Export Citation Format

Share Document