scholarly journals In Vitro Induction and Assessment of Tetraploid Plants From Shoot Cultures of Diploid Niger (Guizotia Abyssinica (L.f.) Cass): a Multipurpose Oilseed Crop

Author(s):  
Mahadev Ramkisan Chambhare ◽  
Tukaram Dayaram Nikam

Abstract Agronomic traits improvement in crop plant can be accomplished by induction of polyploidy. Niger (Guizotia abyssinica (L.f.) Cass.) is one of the important edible oil yielding diploid crop (2n = 30). In the present study, the tetraploidization in Niger plants was achieved by treating apical portion of in vitro raised shoots with colchicine and their confirmation by chromosome counting and flow cytometry. The in vitro shoots were raised from leaf explants on MS medium supplemented with 1.0 mg/l BAP (6-benzylaminopurine). The survival and nature of growth of treated shoots was variable with colchicine concentration (0.0, 0.005, 0.01, 0.02, 0.03, and 0.04%) and exposure time (4, 8, 12, and 16 h). The maximum tetraploid induction ratio was recorded with 0.02% colchicine treatment for 8 h which yielded 38.4% tetraploids. The chromosome number in root cells of tetraploid plantlets was 2n=4x=60 and the DNA content in leaf cells was 10.34 pg which was double to the diploid plant (4.70 pg) cells. In addition, there was significant difference exist in leaf characteristics of diploid and tetraploid plantlets. Compared to diploid plantlets, the tetraploid plantlets showed larger leaves, larger stomatal size, low stomatal index, larger capitula, larger seeds, and a greater number of seeds per capitula. The oil content in seeds was higher and associated with altered fatty acid profile. The results demonstrated that the tetraploid plantlets obtained in this study exhibited some superior agronomical traits (as mentioned above) compared to diploid. The developed protocol and produced tetraploid plantlets will open the new door in improvement of edible oil yielding crop Guizotia abyssinica (L.f.) Cass.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 755
Author(s):  
Angela Ricci ◽  
Luca Capriotti ◽  
Bruno Mezzetti ◽  
Oriano Navacchi ◽  
Silvia Sabbadini

In the present study, an efficient system for the in vitro regeneration of adventitious shoots from the peach rootstock Hansen 536 leaves has been established. Twenty regeneration media containing McCown Woody Plant Medium (WPM) as a basal salt supplemented with different concentrations and combinations of plant growth regulators (PGRs) were tested. Expanded leaves along with their petiole from 3-week-old elongated in vitro shoot cultures were used as starting explants. The highest regeneration rate (up to 53%) was obtained on WPM basal medium enriched with 15.5 μM N6-benzylaminopurine (BAP). The influences on leaf regeneration of the ethylene inhibitor silver thiosulphate (STS) and of different combinations of antibiotics added to the optimized regeneration medium were also investigated. The use of 10 μM STS or carbenicillin (238 μM) combined with cefotaxime (210 μM) significantly increased the average number of regenerating shoots per leaf compared to the control. In vitro shoots were finally elongated, rooted and successfully acclimatized in the greenhouse. The results achieved in this study advances the knowledge on factors affecting leaf organogenesis in Prunus spp., and the regeneration protocol described looks promising for the optimization of new genetic transformation procedures in Hansen 536 and other peach rootstocks and cultivars.


2019 ◽  
Vol 11 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Ashutosh PATHAK ◽  
Aruna JOSHI ◽  
Asha SHARMA

Portulaca quadrifida (Portulacaceae) is an annual succulent herb having medicinal value and is consumed as a vegetable or salads in India. In the present study, leaf explants were inoculated on Murashige and Skoog’s (MS) medium fortified with sucrose (3%) and combinations of N6-benzyladenine (6-BA) and kinetin (KIN) individually and in combination with 1-naphtalene acetic acid (NAA). Rapid regeneration was observed in medium fortified with combinations of 6-BA (8 µM) and NAA (1 µM) which formed 19.40 ± 0.64 shoots with 100% response. Variation in sucrose concentrations (4-6%) was tried but it failed to increase the shoot number. When the optimized medium was fortified with different carbon sources viz. dextrose, glucose and maltose, they could not evoked better response and sucrose proved to be more effective for regeneration. Rooting of in vitro shoots was achieved in ½MS + sucrose (1%) + indole-3-butyric acid (IBA, 2 µM).


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 460F-461
Author(s):  
Xiaoling Cao ◽  
F.A. Hammerschlag

As part of a program to develop transgenic highbush blueberry (Vaccinium corymbosum L.) cultivars, studies were conducted to determine optimum conditions for high efficiency shoot regeneration from leaf explants of in vitro-propagated shoot cultures. The effect of either thidiazuron at 1 or 5 μM, or zeatin riboside at 20 μM, and two lit levels (18 ± 5 or 55 ± 5 μmol·m-2·s-1) on shoot organogenesis were investigated. With the exception of `Bluecrop', which did not regenerate shoots, maximum shoot regeneration of 13, 12.7, 12.6 and 4.6 shoots per explant for cultivars Duke, Georgiagem, Sierra, and Jersey, respectively, occured on regeneration medium with zeatin riboside and under a light intensity of 55 μmol·m-2·s-1. Whereas `Duke' regenerated equally well on regeneration medium with either zeatin riboside or 5 μM thidiazuron, regeneration frequencies for `Georgiagem' and `Sierra' were significantly higher on zeatin riboside. A light intensity of 55 μmol·m-2·s-1 significantly increased regeneration of cultivars Duke, Jersey, and Sierra on zeatin riboside, but inhibited regeneration of Duke on 5 μM thidazuron.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 678d-678
Author(s):  
Kathleen Heuss ◽  
Qingzhong Liu ◽  
Rosemarie Hammond ◽  
Freddi Hammerschlag

As part of our program to develop transgenic peach cultivars with improved disease resistance, we showed that grafting of in vitro cultured `Suncrest' peach [Prunus persica (L.) Batsch] tips `onto decapitated stems of Prunus necrotic ringspot virus (PNRSV) infected `Suncrest' shoot cultures, resulted in consistent transfer of virus across grafts as demonstrated by RNA hybridization analysis, suggesting that such a system could be useful for measuring resistance to PNRSV in peach shoot cultures. We have extended these studies to include grafts of `Springcrest' and `Nemaguard' test tips onto `Suncrest' stocks. RNA hybridization analysis showed that PNRSV persists in shoot cultures for 18 months after initiation from PNRSV-infected `Suncrest' trees and after 16 weeks of treatment of 4°C in the dark, suggesting that a supply of infected shoot cultures could be maintained for repeated use. Graft success rates for grafts of `Springcrest' onto `Suncrest' and `Nemaguard' onto `Suncrest', equaled or exceeded success rates for `Suncrest' onto `Suncrest'. Virus was transmitted from infected stocks into `Suncrest', `Springcrest', and `Nemaguard' test tips by 2 weeks in most successful micrografts. There was no significant difference in the virus concentrations among the three scions at 2, 4, and 6 weeks after grafting, suggesting that there is equal efficacy of virus transfer through grafts from `Suncrest' to the three cultivars, and that no differences in resistance to PNRSV exist among these cultivars.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Djibril Sané ◽  
Frédérique Aberlenc-Bertossi ◽  
Léopold Ibrahima Djitiningo Diatta ◽  
Badara Guèye ◽  
Abdourahman Daher ◽  
...  

This study provides a physiological analysis of somatic embryogenesis in four elite cultivars of date palms: Ahmar, Amsekhsi, Tijib, and Amaside, from the initial callogenesis to establishment and proliferation of embryogenic suspension cultures. Somatic embryos development and in vitro plants rooting were also studied. For each step, auxins and cytokinins concentrations were optimised. The primary callogenesis from leaf explants of seedlings appeared highly dependent on genotype. Ahmar (80%) and Amsekhsi (76%) appeared highly callogenic, whereas Tijib (10%) and Amaside (2%) produced low amounts of calluses. 2,4-Dichlorophenoxyacetic acid appeared favorable to the induction of primary callogenesis and its effect was enhanced by the addition of benzyl adenine or adenine sulfate. Secondary friable calli obtained from chopped granular calli were used to initiate embryogenic cell suspensions in media supplied with 2,4-dichlorophenoxyacetic acid. Suspension cultures showed a growth rate of fourfold after four subcultures in presence of 2,4-dichlorophenoxyacetic acid 2 mg/L. Our results showed that a seven-day transitory treatment with benzyl adenine 0,5 mg/L was necessary to optimize embryos development. Naphthalene acetic acid induced the development of primary orthogravitropic roots during embryos germination. The comparison with cytofluorometry of nuclear DNA amounts showed no significant difference in ploidy level between regenerated plants and seedlings.


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 1045-1049 ◽  
Author(s):  
Dongliang Qiu ◽  
Xiangying Wei ◽  
Shufang Fan ◽  
Dawei Jian ◽  
Jianjun Chen

Leaf explants derived from in vitro–grown shoots of blueberry cultivars Bluejay, Pink Lemonade, Sunshine Blue, and Top Hat were cultured on woody plant medium (WPM) supplemented with 9.12 μm 6-(4-hydroxy-3-methylbut-2-enylamino) purine or zeatin (ZT) in combination with 1.23, 2.46, or 4.92 μm indole-3-butyric acid (IBA). Calluses were induced from the explants and adventitious shoots were regenerated. ‘Sunshine Blue’ and ‘Top Hat’ produced more than four shoots per explant but shoot numbers were less than one for each ‘Pink Lemonade’ explant and about 0.2 per ‘Bluejay’ explant. The results indicate that there is significant difference among cultivars in indirect shoot organogenesis. The differences may be related to their diverse genetic background as they are polyploid hybrids. Microcuttings derived from adventitious shoots of ‘Sunshine Blue’ rooted in vitro in WPM medium supplemented with 9.84 μm IBA and also rooted ex vitro in a peat-based substrate after cuttings were dipped or not dipped in IBA solutions. Direct rooting of microcuttings in the peat-based substrate was effective, suggesting that in vitro rooting may not be necessarily needed. Survival rate of ex vitro–rooted plants in a shaded greenhouse was high, more than 90%. The established shoot regeneration protocols could be used for rapid propagation of ‘Sunshine Blue’ and ‘Top Hat’ and for cultivar improvement through genetic transformation.


OENO One ◽  
2015 ◽  
Vol 49 (1) ◽  
pp. 37 ◽  
Author(s):  
Nadra Khan ◽  
Maqsood Ahmed ◽  
Ishfaq Hafiz ◽  
Nadeem Abbasi ◽  
Shaghef Ejaz ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To optimize the concentrations of growth regulators in the media for the proficient micropropagation of grapevine (<em>Vitis vinifera </em>L.) cv. King’s Ruby.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Apical meristems of the grape cultivar were used to establish <em>in vitro</em> shoot cultures. Nodal explants, each containing an axillary bud, taken from <em>in vitro</em> grown shoots were inoculated in shoot proliferation medium, i.e., half strength Murashige and Skoog (MS) medium supplemented with benzyl aminopurine (BAP), kinetin, glycine and gibberellic acid (GA<sub>3</sub>). A higher number of shoots (5.33) with greater shoot length (2.75 cm) was produced in the medium supplemented with 1.0 mg L<sup>-1</sup> BAP and 0.1 mg L<sup>-1</sup> GA<sub>3</sub>. Calluses were induced from leaf explants taken from <em>in vitro</em> grown shoots. Callus induction was greater (73.00%) on the medium containing 2.0 mg L<sup>-1</sup> 2,4-dichlorophenoxyacetic acid (2,4-D), 0.3 mg L<sup>-1</sup> BAP and 0.2 mg L<sup>-1</sup> α-naphthaleneacetic acid (NAA). The maximum frequency of shoot regeneration (53.33%) was achieved on the medium supplemented with 1.5 mg L<sup>-1</sup> BAP and 0.5 mg L<sup>-1</sup> NAA, and the regenerated shoots successfully formed roots on growth regulator-free half strength MS medium.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Optimizing the concentration of BAP and GA<sub>3</sub> and omitting the glycine and kinetin in the culture medium increased the number and length of shoots. Similarly, for inducing the callus of the leaf explants, taken from <em>in vitro</em> grown shoots, it is recommended to adjust the medium with the higher concentration of 2,4-D and lower concentrations of BAP. Moreover, the maximum number of shoots was regenerated on a medium supplemented with relatively high levels of both BAP and NAA (1.5 and 0.5 mg L<sup>-1</sup>, respectively). Finally, we suggest the half strength MS medium that is free from growth regulators for the root formation of the regenerated shoots.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Optimizing the concentration of growth regulators is crucial for the efficient micropropagation of a grape cultivar. Knowing the specific balance between the growth regulators is necessary to establish <em>in vitro</em> shoot cultures, callus induction and shoot regeneration and, hence, to propagate disease-free true to type grape cultivars in a short time.</p>


2021 ◽  
Author(s):  
Saeed Jafarirad ◽  
Morteza Kosari‑Nasab ◽  
Monireh Aminpour ◽  
Zahra Rezaei

Abstract Reduced graphene oxide (rGO) and Mg/rGO nanocomposites (NCs) were prepared by an eco-friendly technique using high molecular weight polyphenols of Rosa canina fruit. Physicochemical properties and cytotoxicity to Mentha longifolia in vitro cultures of these nanomaterials were examined by using XRD, FESEM, EDX, FTIR, DLS/Zeta potential, UV–Visible and GC-MS techniques. The characterization techniques confirmed the synthesis of rGO and Mg/rGO NCs with particle sizes less than 20 nm (based on FESEM). In accordance to the biological measurements, rGO showed in vitro cytotoxicity to M. longifolia shoot cultures. Mg/rGO NCs showed no significant difference in the growth parameters except for a decrease in the soot number at the concentrations of 50 and 150 mg/L and a decrease in the length of the tallest root at the concentrations of 100 and 150 mg/L, however, efficiently improved the photosynthetic pigment contents. The phytochemical assay depicted that the total content of volatile compounds was increased in the treated cultures with 25, 50, and 100 mg/L of rGO and Mg/rGO NCs in comparison to the control. Generally, the more oxygenated and hydrocarbon sesquiterpenes was observed in the cultures treated with 25 and 100 mg/L of rGO and 25 and 50 mg/L of Mg/rGO NCs.


MedPharmRes ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 5-20
Author(s):  
Vu Ho ◽  
Toan Pham ◽  
Tuong Ho ◽  
Lan Vuong

IVF carries a considerable physical, emotional and financial burden. Therefore, it would be useful to be able to predict the likelihood of success for each couple. The aim of this retrospective cohort study was to develop a prediction model to estimate the probability of a live birth at 12 months after one completed IVF cycle (all fresh and frozen embryo transfers from the same oocyte retrieval). We analyzed data collected from 2600 women undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) at a single center in Vietnam between April 2014 and December 2015. All patients received gonadotropin-releasing hormone (GnRH) antagonist stimulation, followed by fresh and/or frozen embryo transfer (FET) on Day 3. Using Cox regression analysis, five predictive factors were identified: female age, total dose of recombinant follicle stimulating hormone used, type of trigger, fresh or FET during the first transfer, and number of subsequent FET after the first transfer. The area under the receiver operating characteristics curve for the final model was 0.63 (95% confidence interval [CI] 0.60‒0.65) and 0.60 (95% CI 0.57‒0.63) for the validation cohort. There was no significant difference between the predicted and observed probabilities of live birth (Hosmer-Lemeshow test, p > 0.05). The model developed had similar discrimination to existing models and could be implemented in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document