scholarly journals Study On Grinding Force of High Volume Fraction SiCp/Al2024 Composites

Author(s):  
Guangyan GUO ◽  
Qi Gao ◽  
Quanzhao Wang ◽  
Shichao Pan

Abstract In view of the difficult machining characteristics of high volume fraction SiCp/Al composites, this paper researches the grinding force variation of grinding SiCp/Al composites with grinding rod. A diamond grinding rod with a diameter of 3mm is used to grind the SiCp/Al2024 composite with 60% volume fraction by the method of end face grinding. By measuring the tangential grinding forces and normal grinding forces after grinding, the theoretical model of unit grinding force is deduced. According to the experimental parameters of spindle speed, feed rate and grinding depth, this paper derives the theoretical model of grinding force based on SiCp/Al2024 composites. And it clarifies the influence mechanism of grinding depth and feed rate on grinding force and explores the variation of grinding parameters on grinding force under dry grinding condition. Then the variation rule of grinding component force ratio is obtaines. The related research and theoretical model have theoretical guiding significance for exploring the grinding properties of hard-to-machine materials.

2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2014 ◽  
Vol 1027 ◽  
pp. 48-51 ◽  
Author(s):  
Dao Hui Xiang ◽  
Yu Long Zhang ◽  
Guang Bin Yang ◽  
Song Liang ◽  
Yan Feng Wang ◽  
...  

High volume fraction SiCp/Al composites were grinded in rotary ultrasonic vibration aided grinding in this experiment, exploring the effects of different grinding parameters (grinding depth, grinding wheel speed, feed rate) on grinding force and the material removal mechanism with ultrasonic grinding. The results showed that grinding force of ultrasonic grinding is lower than the ordinary grinding in the same grinding parameters. Studying on material removal mechanism of ultrasonic vibration grinding is bound to have important theoretical and practical significance for the improvement of grinding processes and the development of mechanical according to the advantages of grinding and ultrasonic machining. Keywords: High volume fraction SiCp/Al composites; ultrasonic grinding; grinding force


2021 ◽  
Author(s):  
Po Jin ◽  
Qi Gao ◽  
Quanzhao Wang ◽  
Wenbo Li

Abstract The milling process of SiCp/Al composites with high volume fraction and large particle size has been studied in this paper. The stress and strain distribution of SiC reinforced particles and the removal mechanism of the material are analysed. The effects of milling depth and feed per tooth on surface quality were analysed. The effect of feed per tooth on the thickness of subsurface damage layer is revealed. The results show that in the end milling process of high volume fraction SiCp/Al composites, the blade diameter is larger relative to the particle size, which leads to the main removal forms of particle size: extrusion crushing and rolling crushing. The surface defects of the machined workpiece mainly include cavity, crack and delamination caused by extrusion of aluminum matrix. The surface quality of the machined workpiece can be improved by increasing the milling depth appropriately. The increase of the feed rate of each tooth will lead to the increase of the surface defect of the machined workpiece and the deterioration of the surface quality. When the feed rate per tooth increases from 4 to 8 μm, the thickness of subsurface damage increases from 47.7 to 60.5 μm. It is found that the ratio between the minimum cutting thickness of SiCp/Al composites and the radius of the cutting edge should be less than or equal to 4%.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2010 ◽  
Vol 5 (6) ◽  
pp. 379 ◽  
Author(s):  
Zhiqiang Li ◽  
Lin Jiang ◽  
Genlian Fan ◽  
Yong Xu ◽  
Di Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document