scholarly journals Halloysite Nanotubes (HNTs)-filled Ethylene-propylene-diene Monomer/styrene-butadiene Rubber (EPDM/SBR) Composites: Mechanical, Swelling, and Morphological Properties

Author(s):  
Sendil Ganeche P ◽  
Balasubramanian P ◽  
Vishvanathperumal S

Abstract Halloysite nanotubes (HNTs) were incorporated into an EPDM/SBR rubber/styrene-butadiene rubber (SBR) composite by melt blending of HNTs into the EPDM/SBR blend. The mechanical properties, abrasion and swelling resistance of HNTs ranging from 2 parts per hundred rubber (phr) to 10 parts per hundred rubber (phr) were investigated in EPDM/SBR base rubber. Tensile strength, 100% modulus (modulus at 100 percent elongation), elongation at break and tear strength were evaluated at ambient temperature using electric universal tensile testing equipment in accordance with ASTM D-412. Hardness, abrasion and swelling resistance were determined using Shore-A Durometer, DIN abrader and immersion techniques, respectively. The results show that increasing HNT content increased tensile strength, tear strength, hardness (stiffness), and crosslink density. The surface morphology of tensile-fractured material was studied using field-emission scanning electron microscopy (FE-SEM). According to FE-SEM results, the most roughness of the surface was seen at HNTs filled rubber nano-composites.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Lan Cen ◽  
Guo-zheng Lv ◽  
Xin-wen Tan ◽  
Zhan-lin Gong

The utilization of waste fibers represents an important environmental benefit and great economic savings for the community. In this study short nylon fibers waste was modified with Glycidyl 3-Pentadecenyl Phenyl Ether (GPPE) in the presence of Triethylamine/Ammonium persulfate by a simple two-step procedure. The reinforcing effects of modified fibers (MNSF-2) on the vulcanization characteristics, mechanical properties, dynamic mechanical properties, and the wear resistant property of Styrene Butadiene Rubber (SBR) tread compounds were investigated. The addition of the MNSF-2 resulted in slightly lower minimum torque (ML) and maximum torque (MH), as well as longer cure time (t90) and scorch time (t10) of tread compounds. The deterioration of tensile strength and elongation at break of the tread compound containing short nylon fibers waste (NSF) was apparent. Conversely, the modified fibers showed reinforcing effect on tread compounds. The tensile strength values of compounds increased with MNSF-2 content, passed through a maximum value, and then reduced slightly. The modulus and the tear strength of compounds increased significantly with fiber loadings. The highest tear strength value was observed in 8phr MNSF-2 reinforced SBR compounds, 31.9% higher than that of the gum compound. Meanwhile elongation at break of MNSF-2 compound maintained a relative high value than that of NSF/SBR compound. The addition of NSF exaggerated wear volume of compounds. However, the wear resistance of MNSF-2 compounds was superior to that of NSF compounds and comparable with that of the gum compound. The DMA results reveal that E′ and tan⁡δ values decreased at elevated temperature. Meanwhile enhanced storage modulus in MNSF-2/SBR tread compound can be observed. It is worth highlighting that MNSF-2/SBR compounds show higher tan⁡δ at 0°C, indicating improved wet traction of tread compounds, while tan⁡δ at 60°C maintains almost the same value as that of the gum sample. The results of this study are encouraging, demonstrating that the use of short nylon fibers waste in composites offers promising potential for the green tire application.


2003 ◽  
Vol 76 (2) ◽  
pp. 299-317 ◽  
Author(s):  
A. M. Shanmugharaj ◽  
Anil K. Bhowmick

Abstract Rheometric and mechanical properties, hysteresis and swelling behavior of the Styrene-Butadiene Rubber vulcanizates (SBR) filled with unmodified and novel electron beam modified surface treated dual phase fillers were investigated. Scorch time increases for these modified filler loaded vulcanizates due to introduction of quinone type oxygen on the surface. Electron beam modification of dual phase filler in the absence of trimethylol propanetriacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) significantly improves the modulus of the SBR vulcanizates, whereas the values of tensile strength and elongation at break drop. However, presence of TMPTA or silane slightly increases the modulus with significant improvement in tensile strength. This effect is more pronounced at higher loading of these modified fillers in SBR vulcanizates. These variations in modulus and tensile strength are explained by the equilibrium swelling data, Kraus plot and a new mathematical model interpreting the polymer-filler interaction. Hysteresis loss ratio of SBR vulcanizates loaded with irradiated fillers in absence and presence of TMPTA or silane increases due to highly aggregated structure of the filler.


2013 ◽  
Vol 812 ◽  
pp. 236-240
Author(s):  
Mohd Zaki Nurul Ayunie ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

The effects of epoxidized palm oil (EPO) content in carbon black filled styrene butadiene rubber (SBR) on tensile strength, elongation at break and crosslink density were investigated. Five different loadings of EPO in parts per hundred rubbers (phr) were used to test the tensile strength of the carbon black filled SBR which showed a decreasing trend as the content of EPO in the vulcanizates increased. In contrast, elongation at break showed the opposite trend where the elongation at break increased as the content of the EPO increased. The SBR vulcanizates with the highest content of EPO gave the highest value of elongation at break which is 2393.56%. In the case of swelling index, it was found to increase as the amount of EPO increased.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


1979 ◽  
Vol 52 (2) ◽  
pp. 353-360 ◽  
Author(s):  
N. D. Ghatge ◽  
N. N. Maldar

Abstract The authors propose a new active vulcanizing agent 2-pentadecylbenzo-quinone dioxime, derivable from the indigenous raw material, cashewnutshell liquid. This vulcanizing agent, when oxidized by red lead, gives styrene-butadiene vulcanizates of improved tensile strength and elongation at break, compared to vulcanizates cured by p-benzoquinone dioxime, 2-methylbenzo-quinone dioxime or standard sulfur curing systems. The new vulcanizates have much greater resistance to heat aging than the corresponding sulfur vulcanisates.


2020 ◽  
Author(s):  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2013 ◽  
Vol 812 ◽  
pp. 216-220 ◽  
Author(s):  
Mohd Nasir Anis Nazurah ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

Epoxidized palm oil (EPO) can act as processing oil has the potential of non toxic, degradable, renewable resource and as the alternative safe process oils in rubber compounding. Epoxidized palm oil is used as some of additives in rubber compounding to provide function of softener or stabiliser thus, improve properties of rubber compounding performance. Rubber that is used in this study is styrene butadiene rubber (SBR); a synthetic rubber copolymer consisting of styrene and butadiene. SBR also has good abrasion resistance and good aging stability when protected by additives. Compared to natural rubber, SBR has better processability, heat aging and abrasion resistance but inferior elongation, hot tear strength, hysteresis, resilience and tensile strength. This study is focusing on the effect of EPO without the addition of carbon black into the compound via tensile and density test. This is very important as to study the physical and mechanical interaction between SBR and EPO without the influence of other fillers. Different loading of oil were used at 25 pphr, 30 pphr. 35 pphr, 40 pphr and 45 pphr in the compounding process as processing aid. EPO35 which contain 35 pphr of EPO shows the highest value of tensile strength which is 2.2 MPa. The vulcanizate that contain 30 pphr of EPO shows the highest value for Youngs modulus which is 0.22 MPa while the elongation at break increased as the oil loading increased. The highest value for density is 0.979 g/cm3 for the vulcanizate contain 25 pphr of EPO. The results indicates that EPO is potential to replace other processing oils as renewable resource and safe to human.


2011 ◽  
Vol 230-232 ◽  
pp. 103-106
Author(s):  
Hai Tao Liu ◽  
Jing Feng Zhang ◽  
Yi Guang Tian ◽  
Xue Jun Weng ◽  
Shi E Lin

Mechanical and vulcanization behaviors of styrene-butadiene rubber(SBR)/N330 and SBR/N330/PBMCN nanocomposites were investigated via partial replacement of SBR with pyrophyllite based modified composite nanopowder(PBMCN), which were prepared by melt mixing procedure. Results show a fairly good dispersion of PBMCN in the SBR/N330/PBMCN composites characterized by field-emission scanning electron microscope (FESEM). Mechanical and vulcanization behaviors of the as-abtained pruducts were measured according to GB/T 528-2009 and GB/T 16584-1996, respectively. Near properties in tensile strength, elongation at break and vulcanization behaviors were observed in SBR/N330/PBMCN nanocomposites when SBR was partially replaced by PBMCN for 8% mass fraction. A possible reinforcement mechanism of PBMCN to SBR/N330/PBMCN nanocomposites is also dicussed based on the experiment.


2012 ◽  
Vol 488-489 ◽  
pp. 612-616 ◽  
Author(s):  
Anyaporn Boonmahitthisud ◽  
Saowaroj Chuayjuljit

In this study, natural rubber/styrene butadiene rubber (NR/SBR) and NR/carboxylated styrene butadiene rubber (NR/XSBR) nanocomposites with carbon nanotube (CNT) were prepared by a latex compounding method. The dry weight ratio of either NR/SBR or NR/XSBR was fixed to 80/20 and the CNT loading in each blend was varied from 0.1 to 0.4 phr. The nanocomposite latices were cast into sheets on a glass mold and then cured at 80°C for 3 h. The tensile properties (tensile strength, modulus at 300% strain, elongation at break) and dynamic mechanical properties (storage modulus, loss tangent) of the vulcanizates were then evaluated. The results showed that the addition of CNT at a very loading could enhance the tensile strength, modulus at 300% strain and storage modulus of these two rubber bends in a dose dependent manner, except that the tensile strength peaked at an optimum filler level, declining at higher filler loadings, whilst the elongation at break deteriorated. Moreover, the tensile strength and modulus at 300% strain of the NR/XSBR nanocomposites appeared to be higher than those of the NR/SBR nanocomposites at the same CNT loadings.


Sign in / Sign up

Export Citation Format

Share Document