scholarly journals Evaluation of Chromosomal Abnormalities and Copy Number Variations in Fetuses with Ultrasonic Soft Markers

2020 ◽  
Author(s):  
Meiying Cai ◽  
Na Lin ◽  
Liangpu Xu ◽  
hailong huang

Abstract Background: Some ultrasonic soft markers can be found during ultrasound examination. However, the etiology of the fetuses with ultrasonic soft markers is still unknown. This study aimed to evaluate the genetic etiology and clinical value of chromosomal abnormalities and copy number variations (CNVs) in fetuses with ultrasonic soft markers.Methods: Among 1131 fetuses, 729 had single ultrasonic soft marker, 322 had two ultrasonic soft markers, and 80 had three or more ultrasonic soft markers. All fetuses underwent conventional karyotyping, followed by single nucleotide polymorphism (SNP) array analysis. Results: Among 1131 fetuses with ultrasonic soft markers, 46 had chromosomal abnormalities. In addition to the 46 fetuses with chromosomal abnormalities consistent with the results of the karyotyping analysis, the SNP array identified additional 6.1% (69/1131) abnormal CNVs. The rate of abnormal CNVs in fetuses with ultrasonic soft marker, two ultrasonic soft markers, three or more ultrasonic soft markers were 6.2%, 6.2%, and 5.0%, respectively. No significant difference was found in the rate of abnormal CNVs among the groups.Conclusions: Genetic abnormalities affect obstetrical outcomes. The SNP array can fully complement conventional karyotyping in fetuses with ultrasonic soft markers, improve detection rate of chromosomal abnormalities, and affect obstetrical outcomes.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Meiying Cai ◽  
Na Lin ◽  
Xuemei Chen ◽  
Meimei Fu ◽  
Nan Guo ◽  
...  

Abstract Background Some ultrasonic soft markers can be found during ultrasound examination. However, the etiology of the fetuses with ultrasonic soft markers is still unknown. This study aimed to evaluate the genetic etiology and clinical value of chromosomal abnormalities and copy number variations (CNVs) in fetuses with ultrasonic soft markers. Methods Among 1131 fetuses, 729 had single ultrasonic soft marker, 322 had two ultrasonic soft markers, and 80 had three or more ultrasonic soft markers. All fetuses underwent conventional karyotyping, followed by single nucleotide polymorphism (SNP) array analysis. Results Among 1131 fetuses with ultrasonic soft markers, 46 had chromosomal abnormalities. In addition to the 46 fetuses with chromosomal abnormalities consistent with the results of the karyotyping analysis, the SNP array identified additional 6.1% (69/1131) abnormal CNVs. The rate of abnormal CNVs in fetuses with ultrasonic soft marker, two ultrasonic soft markers, three or more ultrasonic soft markers were 6.2%, 6.2%, and 5.0%, respectively. No significant difference was found in the rate of abnormal CNVs among the groups. Conclusions Genetic abnormalities affect obstetrical outcomes. The SNP array can fully complement conventional karyotyping in fetuses with ultrasonic soft markers, improve detection rate of chromosomal abnormalities, and affect pregnancy outcomes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meiying Cai ◽  
Hailong Huang ◽  
Liangpu Xu ◽  
Na Lin

Applying single nucleotide polymorphism (SNP) array to identify the etiology of fetal central nervous system (CNS) abnormality, and exploring its association with chromosomal abnormalities, copy number variations, and obstetrical outcome. 535 fetuses with CNS abnormalities were analyzed using karyotype analysis and SNP array. Among the 535 fetuses with CNS abnormalities, chromosomal abnormalities were detected in 36 (6.7%) of the fetuses, which were consistent with karyotype analysis. Further, additional 41 fetuses with abnormal copy number variations (CNVs) were detected using SNP array (the detection rate of additional abnormal CNVs was 7.7%). The rate of chromosomal abnormalities, but not that of pathogenic CNVs in CNS abnormalities with other ultrasound abnormalities was significantly higher than that in isolated CNS abnormalities. The rates of chromosomal abnormalities and pathogenic CNVs in fetuses with spine malformation (50%), encephalocele (50%), subependymal cyst (20%), and microcephaly (16.7%) were higher than those with other isolated CNS abnormalities. The pregnancies for 36 cases with chromosomal abnormalities, 18 cases with pathogenic CNVs, and three cases with VUS CNVs were terminated. SNP array should be used in the prenatal diagnosis of fetuses with CNS abnormalities, which can enable better prenatal assessment and genetic counseling, and affect obstetrical outcomes.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 458-458
Author(s):  
Kajsa Paulsson ◽  
Jean-Baptiste Cazier ◽  
Jane Stevens ◽  
Tracy Chaplin ◽  
Finlay MacDougall ◽  
...  

Abstract The long-term disease-free survival rate of adult acute lymphoblastic leukemia (ALL) patients remains less than 40%, in contrast to pediatric cases where it approaches 80%. Furthermore, whereas genetic abnormalities are widely used in childhood ALL for assigning patients to prognostic risk groups, their use in adult ALL is generally restricted to the presence or absence of the t(9;22)/[BCR-ABL1]. Novel prognostic markers, allowing better treatment stratification, and new treatment targets are therefore much needed. We have investigated diagnostic samples from 45 adult ALL cases using genome-wide, high-resolution single nucleotide polymorphism (SNP) array analysis with the Affymetrix 10K, 250K Nsp, and 250K Sty chips, in total including more than 500,000 SNPs with a median inter-marker distance of <2.5 kb. This method, which has not previously been applied to adult ALL, enables the detection of genetic copy number abnormalities as well as uniparental disomies (UPDs) with a much higher resolution than cytogenetic and molecular genetic techniques. We detected 367 genetic abnormalities not corresponding to known copy number polymorphisms among the 45 cases. These comprised 94 copy number gains, 211 hemizygous deletions, 47 homozygous deletions, and 15 UPDs. All but three of the patients (93%) displayed one or more anomaly not detectable with standard genetic analyses. Most notably, we found high frequencies of deletions targeting the genes CDKN2A (P16) (21 cases; 47%), PAX5 (15 cases; 33%), IKZF1 (IKAROS) (8 cases; 18%), ETV6 (7 cases; 16%), RB1 (5 cases; 11%), and EBF1 (2 cases; 4.4%). Thirty-two cases (71%) harbored a deletion of at least one of these genes. CDKN2A deletions were homozygous in 17 cases and associated with partial UPDs in 5 cases. PAX5 deletions were always hemizygous and frequently large, including also CDKN2A in all but three patients. Notably, loss of IKZF1 was found in 5 of 10 (50%) t(9;22)/[BCR-ABL1]-positive ALL cases. Reverse transcriptase-PCR for this gene showed that some t(9;22)-positive cases without this deletion expressed a dominant-negative isoform of IKZF1, suggesting that different mechanisms for downregulation of IKZF1 occur and that this gene is frequently targeted in t(9;22)+ ALL. Furthermore, the SNP array analysis revealed novel recurrent deletions targeting the genes DLG2 (4 cases; 8.9%), LDOC1 (3 cases; 6.7%), ERBB4, and CDH13 (2 cases each; 4.4%). In conclusion, using high-resolution SNP arrays we detect a very high frequency of hidden genetic changes in adult ALL cases. Deletions, frequently cryptic, comprised 70% of the found abnormalities, suggesting that microdeletions are a characteristic feature of adult ALL. Most importantly, the analyses revealed recurrent genetic abnormalities in adult ALL targeting novel genes, not previously implicated in leukemogenesis. In addition to giving new insights into the leukemogenic process, these findings are likely to be clinically important, with the possibility of identifying new prognostic markers as well as future treatment targets in adult ALL.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
Yan-Ran Sheng ◽  
Shun-Yu Hou ◽  
Wen-Ting Hu ◽  
Chun-Yan Wei ◽  
Yu-Kai Liu ◽  
...  

It is well established that embryonic chromosomal abnormalities (both in the number of chromosomes and the structure) account for 50% of early pregnancy losses. However, little is known regarding the potential differences in the incidence and distribution of chromosomal abnormalities between patients with sporadic abortion (SA) and recurrent pregnancy loss (RPL), let alone the role of submicroscopic copy-number variations (CNVs) in these cases. The aim of the present study was to systematically evaluate the role of embryonic chromosomal abnormalities and CNVs in the etiology of RPL compared with SA. Over a 3-year period, 1556 fresh products of conception (POCs) from miscarriage specimens were investigated using single nucleotide polymorphism array (SNP-array) and CNV sequencing (CNV-seq) in this study, along with further functional enrichment analysis. Chromosomal abnormalities were identified in 57.52% (895/1556) of all cases. Comparisons of the incidence and distributions of chromosomal abnormalities within the SA group and RPL group and within the different age groups were performed. Moreover, 346 CNVs in 173 cases were identified, including 272 duplications, 2 deletions and 72 duplications along with deletions. Duplications in 16q24.3 and 16p13.3 were significantly more frequent in RPL cases, and thereby considered to be associated with RPL. There were 213 genes and 131 signaling pathways identified as potential RPL candidate genes and signaling pathways, respectively, which were centered primarily on six functional categories. The results of the present study may improve our understanding of the etiologies of RPL and assist in the establishment of a population-based diagnostic panel of genetic markers for screening RPL amongst Chinese women.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 634-642
Author(s):  
Shiqiang Luo ◽  
Xingyuan Chen ◽  
Tizhen Yan ◽  
Jiaolian Ya ◽  
Zehui Xu ◽  
...  

High-throughput sequencing based on copy number variation (CNV-seq) is commonly used to detect chromosomal abnormalities. This study identifies chromosomal abnormalities in aborted embryos/fetuses in early and middle pregnancy and explores the application value of CNV-seq in determining the causes of pregnancy termination. High-throughput sequencing was used to detect chromosome copy number variations (CNVs) in 116 aborted embryos in early and middle pregnancy. The detection data were compared with the Database of Genomic Variants (DGV), the Database of Chromosomal Imbalance and Phenotype in Humans using Ensemble Resources (DECIPHER), and the Online Mendelian Inheritance in Man (OMIM) database to determine the CNV type and the clinical significance. High-throughput sequencing results were successfully obtained in 109 out of 116 specimens, with a detection success rate of 93.97%. In brief, there were 64 cases with abnormal chromosome numbers and 23 cases with CNVs, in which 10 were pathogenic mutations and 13 were variants of uncertain significance. An abnormal chromosome number is the most important reason for embryo termination in early and middle pregnancy, followed by pathogenic chromosome CNVs. CNV-seq can quickly and accurately detect chromosome abnormalities and identify microdeletion and microduplication CNVs that cannot be detected by conventional chromosome analysis, which is convenient and efficient for genetic etiology diagnosis in miscarriage.


2021 ◽  
pp. 1-8
Author(s):  
Jian-Chun He ◽  
Shao-Ying Li ◽  
Wen-Zhi He ◽  
Jia-Jia Xian ◽  
Xiao-Yan Ma ◽  
...  

At present, low-pass whole-genome sequencing (WGS) is frequently used in clinical research and in the screening of copy number variations (CNVs). However, there are still some challenges in the detection of triploids. Restriction site-associated DNA sequencing (RAD-Seq) technology is a reduced-representation genome sequencing technology developed based on next-generation sequencing. Here, we verified whether RAD-Seq could be employed to detect CNVs and triploids. In this study, genomic DNA of 11 samples was extracted employing a routine method and used to build libraries. Five cell lines of known karyotypes and 6 triploid abortion tissue samples were included for RAD-Seq testing. The triploid samples were confirmed by STR analysis and also tested by low-pass WGS. The accuracy and efficiency of detecting CNVs and triploids by RAD-Seq were then assessed, compared with low-pass WGS. In our results, RAD-Seq detected 11 out of 11 (100%) chromosomal abnormalities, including 4 deletions and 1 aneuploidy in the purchased cell lines and all triploid samples. By contrast, these triploids were missed by low-pass WGS. Furthermore, RAD-Seq showed a higher resolution and more accurate allele frequency in the detection of triploids than low-pass WGS. Our study shows that, compared with low-pass WGS, RAD-Seq has relatively higher accuracy in CNV detection at a similar cost and is capable of identifying triploids. Therefore, the application of this technique in medical genetics has a significant potential value.


Author(s):  
Xizhi Luo ◽  
Fei Qin ◽  
Guoshuai Cai ◽  
Feifei Xiao

Abstract Motivation Copy number variation plays important roles in human complex diseases. The detection of copy number variants (CNVs) is identifying mean shift in genetic intensities to locate chromosomal breakpoints, the step of which is referred to as chromosomal segmentation. Many segmentation algorithms have been developed with a strong assumption of independent observations in the genetic loci, and they assume each locus has an equal chance to be a breakpoint (i.e. boundary of CNVs). However, this assumption is violated in the genetics perspective due to the existence of correlation among genomic positions, such as linkage disequilibrium (LD). Our study showed that the LD structure is related to the location distribution of CNVs, which indeed presents a non-random pattern on the genome. To generate more accurate CNVs, we proposed a novel algorithm, LDcnv, that models the CNV data with its biological characteristics relating to genetic dependence structure (i.e. LD). Results We theoretically demonstrated the correlation structure of CNV data in SNP array, which further supports the necessity of integrating biological structure in statistical methods for CNV detection. Therefore, we developed the LDcnv that integrated the genomic correlation structure with a local search strategy into statistical modeling of the CNV intensities. To evaluate the performance of LDcnv, we conducted extensive simulations and analyzed large-scale HapMap datasets. We showed that LDcnv presented high accuracy, stability and robustness in CNV detection and higher precision in detecting short CNVs compared to existing methods. This new segmentation algorithm has a wide scope of potential application with data from various high-throughput technology platforms. Availability and implementation https://github.com/FeifeiXiaoUSC/LDcnv. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 159 (2) ◽  
pp. 66-73 ◽  
Author(s):  
Takahiro Kinoshita ◽  
Masashi Mikami ◽  
Tadayuki Ayabe ◽  
Keiko Matsubara ◽  
Hiromi Ono ◽  
...  

The genomic region at 15q11.2q13 represents a hotspot for copy-number variations (CNVs) due to nonallelic homologous recombination. Previous studies have suggested that the development of 15q11.2q13 deletions in sperm may be affected by seasonal factors because patients with Prader-Willi syndrome resulting from 15q11.2q13 deletions on paternally derived chromosomes showed autumn-dominant birth seasonality. The present study aimed to determine the frequency of 15q11.2q13 CNVs in sperm of healthy men and clarify the effects of various environmental factors, i.e., age, smoking status, alcohol intake, and season, on the frequency. Thirty volunteers were asked to provide semen samples and clinical information once in each season of a year. The rates of 15q11.2q13 CNVs were examined using 2-color FISH. The results were statistically analyzed using a generalized estimating equation with negative binomial distribution and a log link function. Consequently, informative data were obtained from 83 samples of 26 individuals. The rates of deletions and duplications ranged from 0.04 to 0.48% and from 0.08 to 0.30%, respectively. The rates were not correlated with the age, smoking status, or alcohol intake. Sperm produced in winter showed 1.2 to 1.4-fold high rates for both deletions and duplications as compared with sperm produced in the other seasons; however, there was no significant difference. These results demonstrate high and variable CNV rates at 15q11.2q13 in sperm of healthy men. These CNVs appear to occur independent of the age, smoking status, or alcohol intake, while the effect of season remains inconclusive. Our results merit further validation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1585-1585
Author(s):  
Elena M. Hartmann ◽  
Itziar Salaverria ◽  
Silvia Bea ◽  
Andreas Zettl ◽  
Pedro Jares ◽  
...  

Abstract Mantle Cell Lymphoma (MCL) is an aggressive B-Cell Non Hodgkin Lymphoma which is genetically characterized by the translocation t(11;14). This translocation leads to juxtaposition of the Cyclin D1 gene and the IgH locus, resulting in constitutive overexpression of Cyclin D1 and consecutive cell cycle dysregulation. Apart from this typical structural genetic alteration, several studies using conventional or array-based comparative genomic hybridization (CGH) reported a high number of secondary numerical genetic alterations contributing to MCL lymphomagenesis and influencing the clinical behavior. Increasingly, there is evidence that loss of heterozygosity (LOH) without copy number changes (e.g. caused by mitotic recombination between the chromosomal homologues, also referred to as acquired (partial) uniparental disomy (a(p)UPD), is an important alternative mechanism for tumor suppressor gene inactivation. However, this phenomenon is undetectable by CGH techniques. Single Nucleotide Polymorphism (SNP) based arrays allow - in addition to high resolution copy number (CN) analyses and SNP genotyping - in the same experiment the analysis of loss of heterozygosity (LOH) events and hereby enable the detection of copy neutral LOH. We analyzed the 3 t(11;14)-positive MCL cell lines Granta 519, HBL-2 and JVM-2 and 5 primary tumor specimens from untreated MCL patients with both the Affymetrix GeneChip®Human Mapping 100K and 500K array sets. In the 3 cell lines, we found an excellent agreement between the copy number changes obtained by SNP array analysis and previously published array CGH results. Extending published results (Nielaender et al., Leukemia 2006), we found regions of pUPD in all 3 MCL cell lines, which often affected regions reported as commonly deleted in MCL. Intriguingly, HBL-2 that is characterized by relatively few chromosomal losses, carries an increased number of large regions showing copy neutral LOH. Furthermore, we compared the results obtained by the 100K and 500K mapping array sets from 5 primary MCL tumor specimens with previously published conventional CGH data. All cases showed genetic alterations in both conventional CGH and SNP array analysis. The total number of copy number alterations detected by conventional CGH was 35, including 23 losses, 10 gains and 2 amplifications. The total number of CN alterations detected by the mapping 100K and 500K array sets was 81 (50 losses, 26 gains and 5 amplifications) and 82 (50 losses, 27 gains and 5 amplifications), respectively. We found an excellent agreement in the large CN alterations detected by conventional CGH and both SNP array platforms. Furthermore, we identified &gt;40 mostly small CN alterations that have not been detected by conventional CGH (median size &lt;5MB for losses and &lt;3Mb for gains). The CN alterations detected by the 100k and the 500K array sets were highly identical. Importantly, we discovered regions of partial UPD in 4 of the 5 MCL cases (size range from around 2Mb up to a single region &gt;40Mb). In conclusion, the results demonstrate the capability of SNP array analysis for identifying CN alterations and partial UPD at high resolution in MCL cell lines as well as in primary tumor samples.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 230-230
Author(s):  
Ilaria Iacobucci ◽  
E. Ottaviani ◽  
A. Astolfi ◽  
S. Soverini ◽  
N. Testoni ◽  
...  

Abstract The Ph chromosome is the most frequent cytogenetic aberration associated with ALL and it represents the single most significant adverse prognostic marker. Despite the encouraging results achieved with imatinib, resistance develops rapidly and is quickly followed by disease progression. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors driving both the disease and resistance remains to be defined. In order to identify at submicroscopic level genetic lesions driving leukemogenesis and resistance, we profiled until now the genomes of 18 patients, out of 55 Ph+ ALL patients treated in our institute, at diagnosis (n=11) or at the time of haematological relapse (n=7) during therapy with imatinib or dasatinib. 250 ng of genomic DNA were processed on 500K single nucleotide polymorphism (SNP) array according to protocols provided by the manufacturer (Affymetrix Inc., Santa Clara, CA, USA). The median SNP call rate of analysed samples was 96%. Raw signal data were analyzed by BRLMM algorithm and copy number state was calculated with respect to a set of 48 Hapmap normal individuals and a diploid reference set of samples obtained from acute leukaemia cases in remission. Regions of amplification and deletion were visualized by Integrated Genome Browser and mapped to RefSeq to identify the specific genes involved in the lesion. Our analysis identified multiple copy number alterations per case, with deletions outnumbering amplification almost 3:1. Lesions varied from loss or gain of complete chromosome arms (trisomy 4, monosomy 7, loss of 9p, 10q, 14q, 16q and gain of 1q and 17q) to microdeletions and microduplications targeting genomic intervals. The recurring microdeletions that we detected in at least 50% of patients (both at diagnosis and at relapse) included 1p36.21 (PRAMEF), 3q29 (TFCR), 7p14.1 (AMPH), 8p23 (DEFB105A), 14q11.2 (DAD1), 16p13.11 (PDXDC1, NTAN1, RRN3), 16p11.2 (SNP) and 19p13.2 (CARM1, SMARCA4). A common microamplification was 4q13.2 (TMPRSS11E) and 17q21.31. Some genomic alterations were identified in genes regulating B-lymphocyte differentiation, such as PAX5 (n=3), BLNK (n=1) and VPREB1 (n=6) and in genes with an established role in leukemogenesis, such as MDS, BTG1, MLLT3 and RUNX1. Furthermore, many of the deletions detected included genes encoded for phosphatase proteins (e.g. PTPRD, PPP1R9B, PTPN18) and for zinc-finger proteins without any difference between diagnosis and resistance. It is noteworthy that some lesions felt in regions lacking annotated genes (loss: 2p11.2, 3p12.3, 7q11.21 and 14q32.33; gain: 8q23.3 and 13q21.1). Using high-resolution genome wide approach we showed that Ph+ ALL is a more complex disease characterized by multiple genomic anomalies which may provide new insights into the mechanisms underlying leukemogenesis and may be used as targets for existing or novel drugs. Supported by: European LeukemiaNet, COFIN 2003, Novartis Oncology Clinical Development, AIL.


Sign in / Sign up

Export Citation Format

Share Document