Profiling the lncRNA-miRNA-mRNA Interaction Network in the Submandibular Gland of Diabetic Mice

Author(s):  
Xijin Shi ◽  
Huimin Liu ◽  
Li Li ◽  
Yan Zhang ◽  
Xin Cong ◽  
...  

Abstract Background: Hyposalivation is one of the common symptoms of diabetes. Although long non-coding RNAs (lncRNAs) have recently been reported to play important roles in the pathogenesis of diabetes, the role of lncRNAs in diabetes-induced hyposalivation remains unknown. Methods: The present study aimed to explore the function of lncRNA-microRNA-mRNA regulatory network in the submandibular gland (SMGs) under the context of diabetes. LncRNA expression profile of the SMGs was analyzed using microarray technology. Differentially expressed lncRNAs were confirmed using real-time quantitative PCR. Bioinformatics analyses were performed, and Coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks were constructed to explore the potential mechanisms of diabetes-induced hyposalivation. Results: A total of 1,273 differentially expressed lncRNAs (536 up-regulated and 737 downregulated) were identified in the SMGs tissues of db/db mice. CNC and ceRNA network analyses were performed based on five differentially expressed lncRNAs validated by real-time quantitative PCR. Gene Ontology analysis of target genes of CNC network revealed that “calcium ion binding” was a highly enriched molecular function. Kyoto Encyclopedia of Genes and Genomes pathway analysis of target genes of ceRNA network revealed that the “mammalian target of rapamycin signaling pathway” was significantly enriched. Conclusions: On the whole, the findings of the present study may provide insight into the possible mechanism of diabetes-induced hyposalivation.

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Pricila da Silva Cunha ◽  
Heloisa B. Pena ◽  
Carla Sustek D’Angelo ◽  
Celia P. Koiffmann ◽  
Jill A. Rosenfeld ◽  
...  

Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36:PRKCZandSKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescentin situhybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR ofPRKCZandSKIis a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jiacheng Wu ◽  
Shui Liu ◽  
Yien Xiang ◽  
Xianzhi Qu ◽  
Yingjun Xie ◽  
...  

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and is associated with a high mortality rate and poor treatment efficacy. In an attempt to investigate the mechanisms involved in the pathogenesis of HCC, bioinformatic analysis and validation by qRT-PCR were performed. Three circRNA GEO datasets and one miRNA GEO dataset were selected for this purpose. Upon combined biological prediction, a total of 11 differentially expressed circRNAs, 15 differentially expressed miRNAs, and 560 target genes were screened to construct a circRNA-related ceRNA network. GO analysis and KEGG pathway analysis were performed for the 560 target genes. To further screen key genes, a protein-protein interaction network of the target genes was constructed using STRING, and the genes and modules with higher degree were identified by MCODE and CytoHubba plugins of Cytoscape. Subsequently, a module was screened out and subjected to GO enrichment analysis and KEGG pathway analysis. This module included eight genes, which were further screened using TCGA. Finally, UBE2L3 was selected as a key gene and the hsa_circ_0009910–miR-1261–UBE2L3 regulatory axis was established. The relative expression of the regulatory axis members was confirmed by qRT-PCR in 30 pairs of samples, including HCC tissues and adjacent nontumor tissues. The results suggested that hsa_circ_0009910, which was upregulated in HCC tissues, participates in the pathogenesis of HCC by acting as a sponge of miR-1261 to regulate the expression of UBE2L3. Overall, this study provides support for the possible mechanisms of progression in HCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Vu Thanh Nguyen ◽  
Yuji Fuse ◽  
Junya Tamaoki ◽  
Shin-ichi Akiyama ◽  
Masafumi Muratani ◽  
...  

The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7) and 2 enzymes involved in glucose metabolism (pgd and fbp1a) were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.


2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


Sign in / Sign up

Export Citation Format

Share Document