scholarly journals Regulating the T7 RNA Polymerase Expression in E. coli BL21 (DE3) to Provide More Host Options for Recombinant Protein Production

Author(s):  
Ying-Shuang Xu ◽  
Fei Du ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
Zi-Xu Zhang ◽  
...  

Abstract Escherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PLacUV5), which produces more T7 RNAP than wild-type lac promoter (PLacWT) to promote the production of recombinant proteins. However, there is a resource allocated limitation between cell growth and protein production when producing autolytic proteins or membrane proteins. T7 RNAP is the key factor to solve this problem. Hence, we replaced respectively PLacUV5 with other inducible promoters: arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet) to optimize the production of recombinant protein by regulating the transcription level of T7 RNAP. Compared with BL21 (DE3), the constructed engineering strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the glucose dehydrogenase (GDH) production, the engineered strains BL21 (DE3::tet) exhibited great biomass, cell survival rate and foreign protein expression level. In addition, these engineered strains had been successfully applied to the production of other membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and E. coli F-ATPase subunit b (Ecb). The engineering strains constructed in this paper provided more host choices for the production of recombinant proteins.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Du ◽  
Yun-Qi Liu ◽  
Ying-Shuang Xu ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
...  

AbstractEscherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.


2006 ◽  
Vol 72 (8) ◽  
pp. 5225-5231 ◽  
Author(s):  
Emmanuel Frachon ◽  
Vincent Bondet ◽  
Hélène Munier-Lehmann ◽  
Jacques Bellalou

ABSTRACT A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gema Lozano Terol ◽  
Julia Gallego-Jara ◽  
Rosa Alba Sola Martínez ◽  
Adrián Martínez Vivancos ◽  
Manuel Cánovas Díaz ◽  
...  

Recombinant protein production for medical, academic, or industrial applications is essential for our current life. Recombinant proteins are obtained mainly through microbial fermentation, with Escherichia coli being the host most used. In spite of that, some problems are associated with the production of recombinant proteins in E. coli, such as the formation of inclusion bodies, the metabolic burden, or the inefficient translocation/transport system of expressed proteins. Optimizing transcription of heterologous genes is essential to avoid these drawbacks and develop competitive biotechnological processes. Here, expression of YFP reporter protein is evaluated under the control of four promoters of different strength (PT7lac, Ptrc, Ptac, and PBAD) and two different replication origins (high copy number pMB1′ and low copy number p15A). In addition, the study has been carried out with the E. coli BL21 wt and the ackA mutant strain growing in a rich medium with glucose or glycerol as carbon sources. Results showed that metabolic burden associated with transcription and translation of foreign genes involves a decrease in recombinant protein expression. It is necessary to find a balance between plasmid copy number and promoter strength to maximize soluble recombinant protein expression. The results obtained represent an important advance on the most suitable expression system to improve both the quantity and quality of recombinant proteins in bioproduction engineering.


2020 ◽  
Author(s):  
Kerstin Kiege ◽  
Nicole Frankenberg-Dinkel

Abstract Background: Heme proteins and heme-derived molecules play an important role in several cellular processes. Therefore, their production and functional analysis is of great research interest. For the analysis of these molecules, high production yields are required. We recently reported the use of the probiotic E. coli strain Nissle 1917 (EcN) to sufficiently produce heme proteins. This strain is capable of taking up heme from the growth medium due to the outer membrane heme receptor ChuA which is absent in regular E. coli expression strains. Unfortunately, the strain lacks the gene for T7 RNA polymerase which is necessary for the expression of genes under the control of the T7-promotor, widely used in expression vectors like the pET or Duet series. Results: A new T7-promoter compatible EcN strain was constructed. Therefore, the gene for T7-RNA polymerase under the control of a lac UV5 promoter was integrated into the malEFG operon of EcN. Test expressions of genes via T7 promoter-based vectors in the new EcN(T7) strain were successful. Expression in EcN(T7) efficiently resulted in the production of recombinant heme proteins in which the heme cofactor was incorporated during protein production. In addition, the new EcN(T7) strain can be used to co-express genes for the production of heme-derived molecules like biliverdin or other open-chain tetrapyrroles. We demonstrate successful recombinant production of the phytochromes BphP from Pseudomonas aeruginosa and Cph1 from Synechocystis sp. PCC6803 loaded with their cofactor biliverdin and phycocyanobilin, respectively. Conclusion: We present a new E. coli strain for sufficient production of heme proteins and heme-derived molecules using T7-promoter based expression vectors. The new EcN(T7) strain enables the use of a broader spectrum of expression vectors as well as the co-expression of genes using the Duet expression vectors. Furthermore, the capability of feeding EcN and EcN(T7) with heme overcomes the rate limiting step in the recombinant heme protein production, i.e. heme biosynthesis of E. coli . Therefore, a higher heme saturation of heme proteins and also higher yields of heme-derived molecules is obtained using the constructed strain.


2019 ◽  
Vol 85 (13) ◽  
Author(s):  
A. Jimmy Ytterberg ◽  
Roman A. Zubarev ◽  
Thomas Baumgarten

ABSTRACT Many recombinant proteins that are produced in Escherichia coli have to be targeted to the periplasm to be functional. N-terminal signal peptides can be used to direct recombinant proteins to the membrane-embedded Sec translocon, a multiprotein complex that translocates proteins across the membrane into the periplasm. We have recently shown that the cotranslational targeting of the single-chain variable antibody fragment BL1 saturates the capacity of the Sec translocon leading to impaired translocation of secretory proteins and protein misfolding/aggregation in the cytoplasm. In turn, protein production yields and biomass formation were low. Here, we study the consequences of targeting BL1 posttranslationally to the Sec translocon. Notably, the posttranslational targeting of BL1 does not saturate the Sec translocon capacity, and both biomass formation and protein production yields are increased. Analyzing the proteome of cells producing the posttranslationally targeted BL1 indicates that the decreased synthesis of endogenous secretory and membrane proteins prevents a saturation of the Sec translocon capacity. Furthermore, in these cells, highly abundant chaperones and proteases can clear misfolded/aggregated proteins from the cytoplasm, thereby improving the fitness of these cells. Thus, the posttranslational targeting of BL1 enables its efficient production in the periplasm due to a favorable adaptation of the E. coli proteome. We envisage that our observations can be used to engineer E. coli for the improved production of recombinant secretory proteins. IMPORTANCE The bacterium Escherichia coli is widely used to produce recombinant proteins. To fold properly, many recombinant proteins have to be targeted to the E. coli periplasm, but so far the impact of the targeting pathway of a recombinant protein to the periplasm has not been extensively investigated. Here, we show that the targeting pathway of a recombinant antibody fragment has a tremendous impact on cell physiology, ultimately affecting protein production yields in the periplasm and biomass formation. This indicates that studying the targeting and secretion of proteins into the periplasm could be used to design strategies to improve recombinant protein production yields.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Weber ◽  
Zhaopeng Li ◽  
Ursula Rinas

Abstract Background Recently it was shown that production of recombinant proteins in E. coli BL21(DE3) using pET based expression vectors leads to metabolic stress comparable to a carbon overfeeding response. Opposite to original expectations generation of energy as well as catabolic provision of precursor metabolites were excluded as limiting factors for growth and protein production. On the contrary, accumulation of ATP and precursor metabolites revealed their ample formation but insufficient withdrawal as a result of protein production mediated constraints in anabolic pathways. Thus, not limitation but excess of energy and precursor metabolites were identified as being connected to the protein production associated metabolic burden. Results Here we show that the protein production associated accumulation of energy and catabolic precursor metabolites is not unique to E. coli BL21(DE3) but also occurs in E. coli K12. Most notably, it was demonstrated that the IPTG-induced production of hFGF-2 using a tac-promoter based expression vector in the E. coli K12 strain TG1 was leading to persistent accumulation of key regulatory molecules such as ATP, fructose-1,6-bisphosphate and pyruvate. Conclusions Excessive energy generation, respectively, accumulation of ATP during recombinant protein production is not unique to the BL21(DE3)/T7 promoter based expression system but also observed in the E. coli K12 strain TG1 using another promoter/vector combination. These findings confirm that energy is not a limiting factor for recombinant protein production. Moreover, the data also show that an accelerated glycolytic pathway flux aggravates the protein production associated “metabolic burden”. Under conditions of compromised anabolic capacities cells are not able to reorganize their metabolic enzyme repertoire as required for reduced carbon processing.


1998 ◽  
Vol 45 (1) ◽  
pp. 127-132 ◽  
Author(s):  
M Piestrzeniewicz ◽  
K Studzian ◽  
D Wilmańska ◽  
G Płucienniczak ◽  
M Gniazdowski

9-Aminoacridine carboxamide derivatives studied here form with DNA intercalative complexes which differ in the kinetics of dissociation. Inhibition of total RNA synthesis catalyzed by phage T7 and Escherichia coli DNA-dependent RNA polymerases correlates with the formation of slowly dissociating acridine-DNA complex of time constant of 0.4-2.3 s. Their effect on RNA synthesis is compared with other ligands which form with DNA stable complexes of different steric properties. T7 RNA polymerase is more sensitive to distamycin A and netropsin than the E. coli enzyme while less sensitive to actinomycin D. Actinomycin induces terminations in the transcript synthesized by T7 RNA polymerase. Despite low dissociation rates of DNA complexes with acridines and pyrrole antibiotics no drug dependent terminations are observed with these ligands.


Sign in / Sign up

Export Citation Format

Share Document