scholarly journals Rhizobium inoculation enhanced the resistance of alfalfa and soil enzymatic activity in Cu-polluted soils

Author(s):  
Chengjiao Duan ◽  
Yuxia Mei ◽  
Qiang Wang ◽  
Yuhan Wang ◽  
Qi Li ◽  
...  

Abstract Although some studies have reported an important role of rhizobia in mitigating heavy metal toxicity, the regulatory mechanism of the alfalfa-rhizobium symbiosis system to resist copper (Cu) stress through biochemical reactions in the plant-soil system is still unclear. Hence, this study assessed the effects of rhizobium inoculation (i.e., Sinorhizobium meliloti CCNWSX0020) on the growth of alfalfa and soil enzyme activities under Cu stress. Our results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition by increasing chlorophyll content, height and biomass and the contents of nitrogen and phosphorus in alfalfa. The content of malondialdehyde (MDA) was increased in both shoot and root of alfalfa under Cu stress. The application of rhizobium alleviated Cu-induced phytotoxicity by increasing the activity of antioxidant enzymes and soluble protein content of tissues and inhibiting the level of lipid peroxidation (i.e., MDA level). In addition, rhizobium inoculation improved soil nutrient cycling, increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass and plant antioxidant enzymes and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiosis system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-polluted soils.

2022 ◽  
Vol 12 ◽  
Author(s):  
Chengjiao Duan ◽  
Yuxia Mei ◽  
Qiang Wang ◽  
Yuhan Wang ◽  
Qi Li ◽  
...  

Some studies have reported the importance of rhizobium in mitigating heavy metal toxicity, however, the regulatory mechanism of the alfalfa-rhizobium symbiosis to resist copper (Cu) stress in the plant-soil system through biochemical reactions is still unclear. This study assessed the effects of rhizobium (Sinorhizobium meliloti CCNWSX0020) inoculation on the growth of alfalfa and soil microbial characteristics under Cu-stress. Further, we determined the regulatory mechanism of rhizobium inoculation to alleviate Cu-stress in alfalfa through plant-soil system. The results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition in alfalfa by increasing the chlorophyll content, height, and biomass, in addition to nitrogen and phosphorus contents. Furthermore, rhizobium application alleviated Cu-induced phytotoxicity by increasing the antioxidant enzyme activities and soluble protein content in tissues, and inhibiting the lipid peroxidation levels (i.e., malondialdehyde content). In addition, rhizobium inoculation improved soil nutrient cycling, which increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass, plant antioxidant enzymes, and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiotic system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-contaminated soils.


2020 ◽  
Vol 22 (4) ◽  
pp. 1045-1056
Author(s):  
Lina Lin ◽  
Minling Gao ◽  
Xuewei Liu ◽  
Zhengguo Song

The effects of Fe–Mn–La ternary oxide-biochar composites on arsenic fractionation, soil enzyme activities, and microbial communities in arsenic-polluted soils were determined.


2018 ◽  
Vol 18 (5) ◽  
pp. 1971-1980 ◽  
Author(s):  
Li Xiao ◽  
Yimei Huang ◽  
Quanchao Zeng ◽  
Junfeng Zhao ◽  
Junying Zhou

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Parul Chaudhary ◽  
Anuj Chaudhary ◽  
Heena Parveen ◽  
Alka Rani ◽  
Govind Kumar ◽  
...  

Abstract Background Since the World’s population is increasing, it’s critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. “Nanophos” is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design. Results Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly (P < 0.05) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity. Conclusion The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.


Sign in / Sign up

Export Citation Format

Share Document