scholarly journals Effect of Synthesized Chitosan Flame Retardant On Flammability, Thermal, And Mechanical Properties of Vinyl Ester/Bamboo Nonwoven Fiber Composites

Author(s):  
Prabhakar M.N. ◽  
K Venkata Chalapathi ◽  
Ur Rehman Shah Atta ◽  
Jung-il Song

Abstract In this study, chitosan-based bio-flame retardant additive (referred to as NCS) was prepared by altering the chitosan (CS) chemically with silica (S) via ion interchange reaction and studied the effect on flame retardant, thermal and mechanical properties of vinyl ester/bamboo fiber (VE/BF) composites manufactured by the vacuum assisted resin transfer molding (VARTM) process. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis used to characterize the NCS. The spectral results revealed a new peak at 1560 cm-1 corresponding to NH3+–-O Si, bring up the interactive bond between CS and S. SEM, and XRD showed the diverse morphology (coarse surface), and significant decrement in the intensity of diffraction patterns respectively support further the formation of NCS. The heat release rate of NCS decreased significantly by 76%, and residual char increased by 47% compared with chitosan. The flame retardant and thermal behavior of NCS-VE/BF composites were examined by UL-94 standards, micro and cone calorimeter and thermogravimetric analysis. The results showed a delay in burning time in UL-94, enhanced LOI % and decrement of peak heat release rate and total heat release rate compared to pure composites by 32, 14, and 18%, respectively. The residual char increased by 47%. The mechanical properties also improved satisfactorily. Overall, the synthesized NCS could be suitable for the fabrication of sustainable flame-retardant natural fiber composite without deterioration of mechanical properties that are suitable for sub-structural parts in engineering applications.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xuejun Lai ◽  
Jiedong Qiu ◽  
Hongqiang Li ◽  
Xingrong Zeng ◽  
Shuang Tang ◽  
...  

An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP) to flame-retard polypropylene (PP). The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimetric test (CCT), and thermogravimetric analysis (TGA). It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR), average heat release rate (AV-HRR), and average mass loss rate (AV-MLR) of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR), TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS). It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning.


2018 ◽  
Vol 31 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Shuang Yang ◽  
Yefa Hu ◽  
Qiaoxin Zhang

In this article, a phosphorus–nitrogen-containing flame retardant (DOPO-T) was successfully synthesized by nucleophilic substitution reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and cyanuric chloride. The chemical structure of DOPO-T was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) and phosphorous-31 NMR, and elemental analysis. DOPO-T was then blended with diglycidyl ether of bisphenol-A to prepare flame-retardant epoxy resins. Thermal properties, flame retardancy, and combustion behavior of the cured epoxy resins were evaluated by differential scanning calorimetry, thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the glass transition temperature ( Tg) and temperature at 5% weight loss of epoxy resin (EP)/DOPO-T thermosets were gradually decreased with the increasing content of DOPO-T. DOPO-T catalyzed the decomposition of EP matrix in advance. The flame-retardant performance of EP thermosets was significantly enhanced with the addition of DOPO-T. EP/DOPO-T-0.9 sample had an LOI value of 36.2% and achieved UL94 V-1 rating. In addition, the average of heat release rate, peak of heat release rate, average of effective heat of combustion, and total heat release (THR) of EP/DOPO-T-0.9 sample were decreased by 32%, 48%, 23%, and 31%, respectively, compared with the neat EP sample. Impressively, EP/DOPO-T thermosets acquired excellent flame retardancy under low loading of flame retardant.


2014 ◽  
Vol 592-594 ◽  
pp. 380-384 ◽  
Author(s):  
K. Ramanaiah ◽  
A.V. Ratna Prasad ◽  
K. Hema Chandra Reddy

Natural fiber composites (NFC) and glass fiber composites (GFC) have been prepared by incorporating elephant grass fibers and glass fibers in to polyester matrix via hand layup technique. In this study, the fire properties of composites have been evaluated by cone calorimeter. The addition of elephant grass fiber has effectively reduced the average heat release rate (Av. HRR) and peak heat release rate (PHRR) of the matrix by 28 %, and 36 %, respectively. Maximum average heat rate emission and carbon monoxide yield of the bio composites decrease substantially compared with that of matrix. However, average carbon dioxide yield, and total smoke release values of matrix are slightly increased with the addition of the elephant grass fiber. The NFC ignites earlier, release greater levels of heat when compared with that of GFC. Average HRR, PHRR and THR values of NFC are about 39%, 71% and 38% greater than those of GFC, respectively. Further, theoretical models were used to predict time to flashover and FO classification of composites.


2016 ◽  
Vol 701 ◽  
pp. 281-285 ◽  
Author(s):  
Pooria Khalili ◽  
Kim Yeow Tshai ◽  
Ing Kong ◽  
Jun Hui Lee ◽  
Farzad Arefi Mostafa

Epoxy was effectively resin infused with 15 %wt intumescing Alumina Trihydrate (ATH) flame retardant (FR) formulations into a 10 %wt palm EFB natural fiber (NF) mat. The effects of ATH and its intumescing blend with Zinc Borate (ZB) and Ammonium Polyphosphate (APP) on flammability, thermal and mechanical properties of the composites were investigated. Compared to neat NF filled epoxy composites, specimens loaded with intumescing blend of FR formulations demonstrated an improved thermal properties, showing greater mass residual which can be attributed to the formation of cross-linked network amongst the NF, FRs and epoxy matrix upon combustion at elevated temperature tested within a TGA instrument. Incorporation of fibers drastically enhanced the mass residue and lowered the heat release compare to the pure epoxy. Addition of the intumescing blend of FR formulations also drastically reduces the combustion heat release, total mass loss and zero drip flame in the NF composites. The optimum FRs formulation with 5 %wt ATH and 10 %wt APP exhibited self-extinguishing property, achieved lowest mass loss and no drip flame under Bunsen burner tests, signifying the synergistic effects between ATH and APP within the NF epoxy composites. APP reacts with the carbonaceous network of NF throughout the ignition period, such interaction formed a thick char layer acting as gas and thermal barrier against the fire mechanism. This reaction does not take place in NF composite specimens without APP. In terms of mechanical properties, NF composites loaded with FRs broadly showed poorer tensile strength, mainly due to the existence of FRs, which acted as a nucleating agent affected the physico-mechanical characteristics of the composites. Amongst the FR rich formulations, specimens with APP or ZB blends seem to possess a more superior tensile strength compared with the neat ATH filled formulation. In addition, composites loaded with FRs showed enhanced Young’s modulus relative to those without addition of FRs.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
MinYi Luo ◽  
Jiayou Xu ◽  
Shu Lv ◽  
XueFeng Yuan ◽  
Xiaolan Liang

Polyvinyl alcohol- (PVA-) based aerogels have attracted widespread attention owing to their low cost, eco-friendliness, and low density. However, the applications of PVA-based aerogels are limited by their flammability. In this study, a flame retardant, ammonium polyphosphate (APP), and a biopolymer, chitosan (CS), were added to polyvinyl alcohol (PVA), and the polymer was further crosslinked using boric acid (H3BO3). In the PVA aerogels, the negatively charged APP and positively charged CS formed a polyelectrolyte complex (PEC) through ionic interaction. Cone calorimetry and vertical burning tests (UL-94) indicated that the PVA composite aerogels have excellent flame retardancy; they could decrease the heat release rate, total heat release rate, and carbon dioxide (CO2) generation. Both PVA/H3BO3 and APP-CS in the composite aerogel could be burned to carbon, and the foamed char layer could act together to impart the PVA composite aerogels with good flame retardancy. Further, the decrease in the temperature at the backside of the aerogels with increasing APP-CS content, as determined by the flame-spraying experiment, indicated that the PVA-based aerogels with APP-CS can also serve as thermal insulation materials. This work provides an effective and promising method for the preparation of PVA-based aerogels with good flame retardancy and thermal insulation property for construction materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xia He ◽  
Xianjun Li ◽  
Zhu Zhong ◽  
Yongli Yan ◽  
Qunying Mou ◽  
...  

Wood-based flame retardant composites were fabricated based on vacuum-pressure impregnating method after high intensive microwave pretreatment. The effects of ammonium polyphosphate (APP) and modified nano-zinc borate (nZB) addition on flame-retardation and smoke-suppression properties of wood were investigated by cone calorimeter method (CONE) and thermogravimetric analysis (TGA). The results show that the heat release rate (HRR), peak heat release rate (pk-HRR), and total heat release (THR) of APP-treated woods decreased greatly with increasing concentration of APP. However, mean yield of CO (Mean COY) of APP-treated wood was much higher (3.5 times) than that of untreated wood. Compared with wood treated with APP at a concentration of 15%, the total smoke product (TSP), Mean COY, and pk-HRR decreased by 78.4%, 71.43%, and 31.23%, when wood was treated with APP and nZB (both concentrations were at 15%). APP and nZB have synergistic effects of flame-retardation and smoke-suppression. Nano-zinc borate combined with APP would be used in wood-based composites to efficiently retard flame, reduce fire intensity, and decrease noxious (CO)/smoke release.


2013 ◽  
Vol 438-439 ◽  
pp. 387-390 ◽  
Author(s):  
Da Liang Liu ◽  
Yi Zhong Yan ◽  
Yun Yong Huang ◽  
Jia Liang Yao ◽  
Jian Bo Yuan

Flame retardants modified asphalt with SBS flame retardant SMA hybrid material was prepared, flame retardant performances of SMA mixture was studied by the cone calorimeter. The results show that adding 12% flame retardant with SBS modified asphalt in preparation of flame retardant SMA mixture, the peak heat release rate values than the non-flame retardant asphalt mixture decreased by 4.02 kW/m2, and the heat release rate values were significantly reduced, the total heat and the amount of smoke of flame retardant asphalt mixture released less than the non-flame retardant asphalt mixture.


2011 ◽  
Vol 105-107 ◽  
pp. 1723-1726
Author(s):  
Wei Ma ◽  
Wen Bin Yao

According to Natural Bamboo Fiber/ Polypropylene fiber(PP) non-woven materials encountered the problem that its flame retardation is insufficient, this paper tried to add flame retardant to improve its performance, then the cone calorimeter was used to evaluate its flammability. The results show that Peak-Heat Release Rate and Smoke Release Rate etc significantly improved. In accordance with the UL94 ,the flame retardation meet the level V-0 , consistent with the requirements of enterprise.


2014 ◽  
Vol 27 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Hyunbum Park ◽  
Changduk Kong ◽  
Jeonghwan Lee ◽  
Ingwon Kim ◽  
Hoyeon Lee

2011 ◽  
Vol 217-218 ◽  
pp. 631-635
Author(s):  
Yong Wang

This paper, analyzes some parameters with the help of Cone Calorimeter (CONE) for the time to ignition, smoke extinction area, heat release rate, carbon monoxide yield and mass loss rate. The results show that the fire retardant agents affect KVV’s flame retardant property. Such as TTI ( time to ignition ) is prolonged to nearly two times, and the average HRR ( heat release rate ) reduces about 18% compared with the ordinary one and the maximum HRR down about 33%of its counterpart.


Sign in / Sign up

Export Citation Format

Share Document