The Synergistic Effect of Flame Retardants on Flammability, Thermal and Mechanical Properties of Natural Fiber Reinforced Epoxy Composite

2016 ◽  
Vol 701 ◽  
pp. 281-285 ◽  
Author(s):  
Pooria Khalili ◽  
Kim Yeow Tshai ◽  
Ing Kong ◽  
Jun Hui Lee ◽  
Farzad Arefi Mostafa

Epoxy was effectively resin infused with 15 %wt intumescing Alumina Trihydrate (ATH) flame retardant (FR) formulations into a 10 %wt palm EFB natural fiber (NF) mat. The effects of ATH and its intumescing blend with Zinc Borate (ZB) and Ammonium Polyphosphate (APP) on flammability, thermal and mechanical properties of the composites were investigated. Compared to neat NF filled epoxy composites, specimens loaded with intumescing blend of FR formulations demonstrated an improved thermal properties, showing greater mass residual which can be attributed to the formation of cross-linked network amongst the NF, FRs and epoxy matrix upon combustion at elevated temperature tested within a TGA instrument. Incorporation of fibers drastically enhanced the mass residue and lowered the heat release compare to the pure epoxy. Addition of the intumescing blend of FR formulations also drastically reduces the combustion heat release, total mass loss and zero drip flame in the NF composites. The optimum FRs formulation with 5 %wt ATH and 10 %wt APP exhibited self-extinguishing property, achieved lowest mass loss and no drip flame under Bunsen burner tests, signifying the synergistic effects between ATH and APP within the NF epoxy composites. APP reacts with the carbonaceous network of NF throughout the ignition period, such interaction formed a thick char layer acting as gas and thermal barrier against the fire mechanism. This reaction does not take place in NF composite specimens without APP. In terms of mechanical properties, NF composites loaded with FRs broadly showed poorer tensile strength, mainly due to the existence of FRs, which acted as a nucleating agent affected the physico-mechanical characteristics of the composites. Amongst the FR rich formulations, specimens with APP or ZB blends seem to possess a more superior tensile strength compared with the neat ATH filled formulation. In addition, composites loaded with FRs showed enhanced Young’s modulus relative to those without addition of FRs.

2020 ◽  
Vol 305 ◽  
pp. 28-35
Author(s):  
Anslem Wong Tsu An ◽  
Sujan Debnath ◽  
Vincent Lee Chieng Chen ◽  
Moola Mohan Reddy ◽  
Alokesh Pramanik

In recent years, studies regarding natural fiber reinforced composites have been increased as they are biodegradable with good mechanical performance therefore can help to overcome the environmental issue. As the natural fibers are easy to obtain, many industries have started to make use of natural fiber composites which are light in weight and possess good mechanical properties. However, the natural fiber composites also possess certain limitations most importantly their high moisture absorption ability which makes them incompatible at degradable environment. The fiber constituents of natural fiber composite may have different type of interactions at different environmental conditions. In addition, the involvement of nanoparticles in the composite may be the solution to overcome the deficiencies. In this research, the degradation behaviour of Oil palm empty fruit bunch (OPEFB) fibers reinforced epoxy composites upon exposure to degradable environmental conditions and the effect of adding nanoparticles have been studied. The tensile tests were conducted before and after the exposure to different environmental conditions including plain water, moist soil, brine solution, and cooking oil. Results shows that the addition of 10wt% of OPEFB fiber to the epoxy composites had improved the mechanical tensile strength up to 15.97% and composites exposed to brine solution have the most prominent sign of degradation in mechanical properties in both composites with and without nanosilica. Nevertheless, the composites with nanosilica have shown up to 24.28% improvement in tensile strength after exposure to different environmental conditions. The improvement were attributed due to filling the voids of the composites with nanosilica and good interfacial adhesion between the nanofiller, fiber, and matrix.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1024 ◽  
Author(s):  
Qiyun Luo ◽  
Yuqi Li ◽  
Li Ren ◽  
Xu Xu ◽  
Shaorong Lu

Well-defined functionalized sisal cellulose fibers (SCFs) grafted on hyperbranched liquid crystals (HLP) were synthesized to improve the compatibility between SCFs and epoxy resin (EP). The influence of SCFs-HLP on the mechanical and thermal properties of SCFs-HLP/EP composites was studied. The results show that the mechanical properties of SCFs-HLP/EP composites were enhanced distinctly. Particularly, compared with EP, impact strength, tensile strength, and flexural strength of composites with 4.0 wt % SCFs-HLP were 38.3 KJ·m−2, 86.2 MPa, and 150.7 MPa, increasing by 118.7%, 55.6%, and 89.6%, respectively. As well, the glass transition temperature of the composite material increased by 25 °C. It is hope that this work will inform ongoing efforts to exploit more efficient methods to overcome the poor natural fiber/polymer adhesion in the interface region.


2021 ◽  
Author(s):  
Prabhakar M.N. ◽  
K Venkata Chalapathi ◽  
Ur Rehman Shah Atta ◽  
Jung-il Song

Abstract In this study, chitosan-based bio-flame retardant additive (referred to as NCS) was prepared by altering the chitosan (CS) chemically with silica (S) via ion interchange reaction and studied the effect on flame retardant, thermal and mechanical properties of vinyl ester/bamboo fiber (VE/BF) composites manufactured by the vacuum assisted resin transfer molding (VARTM) process. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis used to characterize the NCS. The spectral results revealed a new peak at 1560 cm-1 corresponding to NH3+–-O Si, bring up the interactive bond between CS and S. SEM, and XRD showed the diverse morphology (coarse surface), and significant decrement in the intensity of diffraction patterns respectively support further the formation of NCS. The heat release rate of NCS decreased significantly by 76%, and residual char increased by 47% compared with chitosan. The flame retardant and thermal behavior of NCS-VE/BF composites were examined by UL-94 standards, micro and cone calorimeter and thermogravimetric analysis. The results showed a delay in burning time in UL-94, enhanced LOI % and decrement of peak heat release rate and total heat release rate compared to pure composites by 32, 14, and 18%, respectively. The residual char increased by 47%. The mechanical properties also improved satisfactorily. Overall, the synthesized NCS could be suitable for the fabrication of sustainable flame-retardant natural fiber composite without deterioration of mechanical properties that are suitable for sub-structural parts in engineering applications.


2010 ◽  
Vol 123-125 ◽  
pp. 1031-1034 ◽  
Author(s):  
Sandhyarani Biswas ◽  
Alok Satapathy ◽  
Amar Patnaik

In order to obtain the favoured material properties for a particular application, it is important to know how the material performance changes with the filler content under given loading conditions. In this study, a series of bamboo fiber reinforced epoxy composites are fabricated using conventional filler (aluminium oxide (Al2O3) and silicon carbide (SiC) and industrial wastes (red mud and copper slag) particles as filler materials. By incorporating the chosen particulate fillers into the bamboo-fiber reinforced epoxy, synergistic effects, as expected are achieved in the form of modified mechanical properties. Inclusion of fiber in neat epoxy improved the load bearing capacity (tensile strength) and the ability to withstand bending (flexural strength) of the composites. But with the incorporation of particulate fillers, the tensile strengths of the composites are found to be decreasing in most of the cases. Among the particulate filled bamboo-epoxy composites, least value of void content are recorded for composites with silicon carbide filling and for the composites with glass fiber reinforcement minimum void fraction is noted for red mud filling. The effects of these four different ceramics on the mechanical properties of bamboo- epoxy composites are investigated and the conclusions drawn from the above investigation are discussed.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2011 ◽  
Vol 32 (8-9) ◽  
pp. 4521-4527 ◽  
Author(s):  
Hongwei He ◽  
Kaixi Li ◽  
Jian Wang ◽  
Guohua Sun ◽  
Yanqiu Li ◽  
...  

2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


Sign in / Sign up

Export Citation Format

Share Document