Synthesis of a phosphorus–nitrogen-containing flame retardant and its application in epoxy resin

2018 ◽  
Vol 31 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Shuang Yang ◽  
Yefa Hu ◽  
Qiaoxin Zhang

In this article, a phosphorus–nitrogen-containing flame retardant (DOPO-T) was successfully synthesized by nucleophilic substitution reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and cyanuric chloride. The chemical structure of DOPO-T was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) and phosphorous-31 NMR, and elemental analysis. DOPO-T was then blended with diglycidyl ether of bisphenol-A to prepare flame-retardant epoxy resins. Thermal properties, flame retardancy, and combustion behavior of the cured epoxy resins were evaluated by differential scanning calorimetry, thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the glass transition temperature ( Tg) and temperature at 5% weight loss of epoxy resin (EP)/DOPO-T thermosets were gradually decreased with the increasing content of DOPO-T. DOPO-T catalyzed the decomposition of EP matrix in advance. The flame-retardant performance of EP thermosets was significantly enhanced with the addition of DOPO-T. EP/DOPO-T-0.9 sample had an LOI value of 36.2% and achieved UL94 V-1 rating. In addition, the average of heat release rate, peak of heat release rate, average of effective heat of combustion, and total heat release (THR) of EP/DOPO-T-0.9 sample were decreased by 32%, 48%, 23%, and 31%, respectively, compared with the neat EP sample. Impressively, EP/DOPO-T thermosets acquired excellent flame retardancy under low loading of flame retardant.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 770 ◽  
Author(s):  
Benben Liu ◽  
Huiling Wang ◽  
Xiaoyan Guo ◽  
Rongjie Yang ◽  
Xiangmei Li

A novel organic-inorganic hybrid containing allyl benzoxazine and polyhedral oligomeric silsesquioxane (POSS) was synthesized by the thiol-ene (click) reaction. The benzoxazine (BOZ)-containing POSS (SPOSS-BOZ) copolymerized with benzoxazine/epoxy resin was used to prepare composites of SPOSS-PBZ-E nanocomposites(NPs). The polymerization behavior was monitored by FTIR and non-isothermal differential scanning calorimetry (DSC), which showed that the composites had completely cured with multiple polymerization mechanisms according to the oxazine ring-opening and epoxy resin (EP) polymerization. The thermal properties of the organic–inorganic polybenzoxazine (PBZ) nanocomposites were analyzed by DSC and thermogravimetric analysis (TGA). Furthermore, the X-ray diffraction analysis and the scanning electron microscopy (SEM) micrographs of the SPOSS-PBZ-E nanocomposites indicated that SPOSS was chemically incorporated into the hybrid nanocomposites in the size range of 80–200 nm. The flame retardancy of the benzoxazine epoxy resin composites was investigated by limiting oxygen index (LOI), UL 94 vertical burn test, and cone calorimeter tests. When the amount of SPOSS reached 10% or more, the vertical burning rating of the curing system arrived at V-1, and when the SPOSS-BOZ content reached 20 wt %, the thermal stability and flame retardancy of the material were both improved. Moreover, in the cone calorimeter testing, the addition of SPOSS-BOZ hindered the decomposition of the composites and led to a reduction in the peak heat release rate (pHRR), the average heat release rate (aHRR), and the total heat release (THR) values by about 20%, 25%, and 25%, respectively. The morphologies of the chars were also studied by SEM and energy dispersive X-ray spectroscopy (EDX), and the flame-retardant mechanism of POSS was mainly a condensed-phase flame retardant. The ceramic layer was formed by the enrichment of silicon on the char surface. When there are enough POSS nanoparticles, it can effectively protect the combustion of internal polymers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
MinYi Luo ◽  
Jiayou Xu ◽  
Shu Lv ◽  
XueFeng Yuan ◽  
Xiaolan Liang

Polyvinyl alcohol- (PVA-) based aerogels have attracted widespread attention owing to their low cost, eco-friendliness, and low density. However, the applications of PVA-based aerogels are limited by their flammability. In this study, a flame retardant, ammonium polyphosphate (APP), and a biopolymer, chitosan (CS), were added to polyvinyl alcohol (PVA), and the polymer was further crosslinked using boric acid (H3BO3). In the PVA aerogels, the negatively charged APP and positively charged CS formed a polyelectrolyte complex (PEC) through ionic interaction. Cone calorimetry and vertical burning tests (UL-94) indicated that the PVA composite aerogels have excellent flame retardancy; they could decrease the heat release rate, total heat release rate, and carbon dioxide (CO2) generation. Both PVA/H3BO3 and APP-CS in the composite aerogel could be burned to carbon, and the foamed char layer could act together to impart the PVA composite aerogels with good flame retardancy. Further, the decrease in the temperature at the backside of the aerogels with increasing APP-CS content, as determined by the flame-spraying experiment, indicated that the PVA-based aerogels with APP-CS can also serve as thermal insulation materials. This work provides an effective and promising method for the preparation of PVA-based aerogels with good flame retardancy and thermal insulation property for construction materials.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1505 ◽  
Author(s):  
Yan Song ◽  
Xu Zong ◽  
Nan Wang ◽  
Ning Yan ◽  
Xueying Shan ◽  
...  

Lignin can be a candidate as a charring agent applied in halogen-free flame retardant polymers, and incorporation of silicon and nitrogen elements in lignin can benefit to enhancing its thermal stability and charring ability. In the present work, wheat straw alkali lignin (Lig) was modified to incorporate silicon and nitrogen elements by γ-divinyl-3-aminopropyltriethoxysilane, and the modified lignin (CLig) was combined with ammonium polyphosphate (APP) as intumescent flame retardant to be applied in poly(Lactic acid) (PLA). The flame retardancy, combustion behavior and thermal stability of PLA composites were studied by the limited oxygen index (LOI), vertical burning testing (UL-94), cone calorimetry testing (CCT) and thermogravimetric analysis (TGA), respectively. The results showed a significant synergistic effect between CLig and APP in flame retarded PLA (PLA/APP/CLig) occured, and the PLA/APP/CLig had better flame retardancy. CCT data analysis revealed that CLig and APP largely reduced the peak heat release rate (PHRR) and total heat release rate (THR) of PLA, indicating their effectiveness in decreasing the combustion of PLA. TGA results exhibited that APP and CLig improved the thermal stability of PLA at high temperature. The analysis of morphology and structure of residual char indicated that a continuous, compact and intumescent char layer on the material surface formed during firing, and had higher graphitization degree. Mechanical properties data showed that PLA/APP/CLig had higher tensile strength as well as elongation at break.


2020 ◽  
Vol 32 (10) ◽  
pp. 1169-1180 ◽  
Author(s):  
Lurong Wang ◽  
Baoping Yang ◽  
Yongliang Guo ◽  
Yabin Zhang ◽  
Niannian Wang ◽  
...  

Herein, we have successfully synthesized phosphorus/nitrogen/silicon tri-elements compound phosphazene derivative hexa-[4-( N-(3-(triethoxysilyl)propyl)acetamide)phenoxy]cyclotriphosphazene (HNTPC) from hexachlorotriphosphazenitrile, methyl 4-hydroxybenzoate, and 3-triethoxysilylpropylamine, and it was used as an additive flame retardant in epoxy resin (EP). Then, the thermal stability and flame retardancy of the composite (HNTPC/EP) were tested. Thermogravimetric analysis showed that the presence of HNTPC made EP matrix decompose at a relatively low temperature, thus promoted the formation of a stable coke layer and protected the matrix from fire. Therefore, the amount of carbon residue was markedly increased at 800°C, indicating an outstanding condensed phase flame-retardant effect. Furthermore, various combustion test data manifested that the addition of HNTPC could significantly improve the flame-retardant performance of EP. In addition, the sample could pass the vertical burning tests (UL-94) V-1 grade when the addition amount was 10% and the limiting oxygen index value was 32.6%, the peak heat release rate and total heat release rate decreased by 40.0% and 21.5%, respectively. Besides, the results of scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy also showed that HNTPC can promote the formation of carbon layer and improved the flame-retardant property of EP. Finally, the condensed phase and gas phase synergistic flame-retardant mechanism of HNTPC was proposed.


2018 ◽  
Vol 89 (10) ◽  
pp. 2031-2040 ◽  
Author(s):  
Fanglong Zhu ◽  
QQ Feng ◽  
YF Xu ◽  
JF Hu

Flame retardant mixtures of multi-walled carbon nanotubes (MWCNTs) and intumescent flame retardant (IFR) coatings were applied to polyamide 6,6 (PA 6,6) fabrics to explore whether MWCNTs acted as a good synergist on the thermal stability and flame resistance of the IFR system. The influence of MWCNTs on the flame retardant properties and thermal degradation of the PA 6,6 fabrics were investigated by limiting oxygen index (LOI), vertical burning test (VBT), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM) and cone calorimeter test (CCT). The peak heat release rate and total heat release of the IFR-PA 6,6 fabric with three kinds of wt% MWCNTs were lower than those of the only traditional IFR-PA 6,6 fabric (reduced by 74.2–76.4% and 74.3–76.5%, respectively). As compared to the traditional IFR coating, it was found that no enhancements for thermal stability and flame retardancy in terms of the ability to retard ignition were achieved for the MWCNT/IFR coating. These results demonstrated that the introduction of MWCNTs into an IFR coating can improve the flame retardancy of PA 6,6 fabric in terms of the heat release rate from CCT analysis, but it failed other burning measurements, such as LOI and VBT.


2021 ◽  
Vol 2 (1) ◽  
pp. 24-48
Author(s):  
Quoc-Bao Nguyen ◽  
Henri Vahabi ◽  
Agustín Rios de Anda ◽  
Davy-Louis Versace ◽  
Valérie Langlois ◽  
...  

This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 26082-26088 ◽  
Author(s):  
Birong Zeng ◽  
Yongzhou Liu ◽  
Li Yang ◽  
Wei Zheng ◽  
Ting Chen ◽  
...  

In order to develop epoxy resins possessing good thermal, mechanical, and flame retardancy performance, a synthesized POSS-bisDOPO was used as co-additive with tetrabutyl titanate to construct the ternary phosphorous–silicon–titanium synergy system.


2017 ◽  
Vol 30 (10) ◽  
pp. 1229-1239 ◽  
Author(s):  
Shan Huang ◽  
Xiao Hou ◽  
Jiaojiao Li ◽  
Xiujuan Tian ◽  
Qing Yu ◽  
...  

A phosphorous/nitrogen-containing diphenylphosphine oxide (DPO) derivative (DPO-SS) was designed and synthesized via a two-step reaction of 4,4′-diaminodiphenylsulfone, 2-hydroxy-benzaldehyde, and DPO. The structure of DPO-SS was confirmed by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). DPO-SS was used as a flame retardant and curing agent for copolymerizing with diglycidyl ether of bisphenol-A. Thermal and flame-retardant properties of the obtained flame-retardant epoxy resin (F-EP) were investigated by thermogravimetric analysis, dynamic thermomechanical analysis, limited oxygen index (LOI) measurement, vertical burning test (UL-94), and cone calorimeter test. Results indicated that all F-EP samples exhibited excellent thermal stability and flame-retardant property. Especially for F-EP with P content of 0.7 wt% (denoted as EP/P-0.7), it achieved high LOI values (32.4%) and UL-94 V-0 rating. Compared with pure EP, all F-EP samples showed lower heat release rate, total heat release, total smoke produce, and little Tg fluctuation. In order to study the flame-retardant mechanism, the char residues were investigated by FTIR, scanning electron microscopy, and energy-dispersive spectrometer analysis. The results manifested that DPO-SS acted as flame retardant in both gas phase and condensed phase. Water absorption properties of pure EP and F-EP were also compared through immersion experiments. Results showed that EP/P-0.7 sample had apparently lower water absorptivity than pure EP.


Sign in / Sign up

Export Citation Format

Share Document