scholarly journals SARS-CoV-2 spike protein 13-mer subdomain corresponds to the drug-binding domain of glutamyl-propyl-tRNA synthetase 1 and is targetable by halofuginone

Author(s):  
Lora Benoit ◽  
Vinayak Shenoy ◽  
Simon Meykler ◽  
Ali Mohseni

Abstract Since its emergence, SARS-CoV-2 has been the subject of intense investigation. Early sequence analysis identified a unique 13 amino acid region (13-mer) nested within the receptor-binding domain (RBD) of the spike protein that directly interacts with the ACE2 receptor. Blasting with the 13-mer identified a highly conserved segment in propyl-tRNA synthetase enzymes. Comparison with the human analogue, glutamyl-propyl-tRNA synthetase 1, showed a high level of identity with its drug binding domain, which is targeted by halofuginone, a drug recently shown to block SARS-CoV-2 infection in vitro. In silico experiments predicted a high affinity interaction between halofuginone and the 13-mer. In vitro addition of halofuginone effectively inhibited binding of recombinant S1 monomer to ACE2. Accordingly, it appears that halofuginone inhibits viral infection by preventing correct interactions between spike protein and ACE2. These findings indicate that viral entry can potentially be drug-targeted and support the application of halofuginone in mitigation of COVID-19.

2021 ◽  
Author(s):  
Lora Benoit ◽  
Vinayak Shenoy ◽  
Simon Meykler ◽  
Ali Mohseni

Abstract Since its emergence, SARS-CoV-2 has been the subject of intense investigation. Early sequence analysis identified a unique 13 amino acid region (13-mer) nested within the receptor-binding domain (RBD) of the spike protein that directly interacts with the ACE2 receptor. Blasting with the 13-mer identified a highly conserved segment in propyl-tRNA synthetase enzymes. Comparison with the human analogue, glutamyl-propyl-tRNA synthetase 1, showed a high level of identity with its drug binding domain, which is targeted by halofuginone, a drug recently shown to block SARS-CoV-2 infection in vitro. In silico experiments predicted a high affinity interaction between halofuginone and the 13-mer. In vitro addition of halofuginone effectively inhibited binding of recombinant S1 monomer to ACE2. Accordingly, it appears that halofuginone inhibits viral infection by preventing correct interactions between spike protein and ACE2. These findings indicate that viral entry can potentially be drug-targeted and support the application of halofuginone in mitigation of COVID-19.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2006 ◽  
Vol 50 (6) ◽  
pp. 2231-2233 ◽  
Author(s):  
Xing-Quan Zhang ◽  
Meredith Sorensen ◽  
Michael Fung ◽  
Robert T. Schooley

ABSTRACT Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.


1994 ◽  
Vol 14 (12) ◽  
pp. 7899-7908
Author(s):  
N Gerwin ◽  
A La Rosée ◽  
F Sauer ◽  
H P Halbritter ◽  
M Neumann ◽  
...  

The Drosophila gap gene knirps (kni) is required for abdominal segmentation. It encodes a steroid/thyroid orphan receptor-type transcription factor which is distributed in a broad band of nuclei in the posterior region of the blastoderm. To identify essential domains of the kni protein (KNI), we cloned and sequenced the DNA encompassing the coding region of nine kni mutant alleles of different strength and kni-homologous genes of related insect species. We also examined in vitro-modified versions of KNI in various assay systems both in vitro and in tissue culture. The results show that KNI contains several functional domains which are arranged in a modular fashion. The N-terminal 185-amino-acid region which includes the DNA-binding domain and a functional nuclear location signal fails to provide kni activity to the embryo. However, a truncated KNI protein that contains additional 47 amino acids exerts rather strong kni activity which is functionally defined by a weak kni mutant phenotype of the embryo. The additional 47-amino-acid stretch includes a transcriptional repressor domain which acts in the context of a heterologous DNA-binding domain of the yeast transcriptional activator GAL4. The different domains of KNI as defined by functional studies are conserved during insect evolution.


2021 ◽  
Author(s):  
Amruta Narayanappa ◽  
Elizabeth B Engler-Chiurazzi ◽  
Isabel C Murray-Brown ◽  
Timothy E Gressett ◽  
Ifechukwude J Biose ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin alpha5beta1 and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin alpha5beta1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single- or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 hours after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence and improved lung histology in a majority of mice 72 hours post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin alpha 5 and alpha v (an alpha 5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin alpha5beta1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.


2020 ◽  
Author(s):  
Sandra Smieszek ◽  
Bart Przychodzen ◽  
Vasilios Polymeropoulos ◽  
Christos Polymeropoulos ◽  
Mihael Polymeropoulos

ACE2 is a key receptor for SARS-CoV-2 cell entry. Binding of SARS-Cov-2 to ACE2 involves the viral Spike protein. The molecular interaction between ACE2 and Spike has been resolved. Interfering with this interaction might be used in treating patients with COVID-19. Inhibition of this interaction can be attained via multiple routes: here we focus on identifying small molecules that would prevent the interaction. Specifically we focus on small molecules and peptides that have the capacity to effectively bind the ACE2: RBD contact domain to prevent and reduce SARS-CoV-2 entry into the cell. We aim to identify molecules that prevent the docking of viral spike protein (mediated by RBD) onto cells expressing ACE2, without inhibiting the activity of ACE2. We utilize the most recent ACE2-RBD crystallography resolved model (PDB-ID:6LZG). Based on animal susceptibility data we narrowed down our interest to the location of amino acid 34 (Histidine) located on ACE2. We performed an in silico screen of a chemical library of compounds with several thousand small molecules including FDA approved compounds. All compounds were tested for binding to the proximal binding site located close to histidine 34 on ACE2. We report a list of four potential small molecules that potentially have the capacity to bind target residue: AY-NH2, a selective PAR4 receptor agonist peptide (CAS number: 352017-71-1), NAD+ (CAS number: 53-84-9), Reproterol, a short-acting β2 adrenoreceptor agonist used in the treatment of asthma (CAS number: 54063-54-6), and Thymopentin, a synthetic immune-stimulant which enhances production of thymic T cells (CAS number: 69558-55-0). The focus is on a High Throughput Screen Assay (HTSA), or in silico screen, delineating small molecules that are selectively binding/masking the crucial interface residue on ACE2 at His34. Consequently, inhibiting SARS-CoV-2 binding to host ACE2 and viral entry is a potent strategy to reduce cellular entry of the virus. We suggest that this anti-viral nature of this interaction is a viable strategy for COVID19 whereas the small molecules including peptides warrant further in vitro screens.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Wenzhu Dong ◽  
Shanshan Li ◽  
Shu’an Wen ◽  
Wei Jing ◽  
Jin Shi ◽  
...  

ABSTRACT In this study, we aimed to assess the in vitro susceptibility to GSK656 among multiple mycobacterial species and to investigate the correlation between leucyl-tRNA synthetase (LeuRS) sequence variations and in vitro susceptibility to GSK656 among mycobacterial species. A total of 187 mycobacterial isolates, comprising 105 Mycobacterium tuberculosis isolates and 82 nontuberculous mycobacteria (NTM) isolates, were randomly selected for the determination of in vitro susceptibility. For M. tuberculosis, 102 of 105 isolates had MICs of ≤0.5 mg/liter, demonstrating a MIC50 of 0.063 mg/liter and a MIC90 of 0.25 mg/liter. An epidemiological cutoff value of 0.5 mg/liter was proposed for identification of GSK656-resistant M. tuberculosis strains. For NTM, the MIC50 and MIC90 values were >8.0 mg/liter for both Mycobacterium intracellulare and Mycobacterium avium. In contrast, all Mycobacterium abscessus isolates had MICs of ≤0.25 mg/liter, yielding a MIC90 of 0.063 mg/liter. LeuRS from M. abscessus showed greater sequence similarity to M. tuberculosis LeuRS than to LeuRSs from M. avium and M. intracellulare. Sequence alignment revealed 28 residues differing between LeuRSs from M. avium and M. intracellulare and LeuRSs from M. tuberculosis and M. abscessus; among them, 15 residues were in the drug binding domain. Structure modeling revealed that several different residues were close to the tRNA-LeuRS interface or the entrance of the drug-tRNA binding pocket. In conclusion, our data demonstrate significant species diversity in in vitro susceptibility to GSK656 among various mycobacterial species. GSK656 has potent efficacy against M. tuberculosis and M. abscessus, whereas inherent resistance was noted for M. intracellulare and M. avium.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2021 ◽  
Vol 22 (4) ◽  
pp. 1913
Author(s):  
Yu Jung Kim ◽  
Min Ho Lee ◽  
Se-Ra Lee ◽  
Hyo-Young Chung ◽  
Kwangmin Kim ◽  
...  

Since it was first reported in Wuhan, China, in 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic outbreak resulting in a tremendous global threat due to its unprecedented rapid spread and an absence of a prophylactic vaccine or therapeutic drugs treating the virus. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a key player in the viral entry into cells through its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor protein, and the RBD has therefore been crucial as a drug target. In this study, we used phage display to develop human monoclonal antibodies (mAbs) that neutralize SARS-CoV-2. A human synthetic Fab phage display library was panned against the RBD of the SARS-CoV-2 spike protein (SARS-2 RBD), yielding ten unique Fabs with moderate apparent affinities (EC50 = 19–663 nM) for the SARS-2 RBD. All of the Fabs showed no cross-reactivity to the MERS-CoV spike protein, while three Fabs cross-reacted with the SARS-CoV spike protein. Five Fabs showed neutralizing activities in in vitro assays based on the Fabs’ activities antagonizing the interaction between the SARS-2 RBD and ACE2. Reformatting the five Fabs into immunoglobulin Gs (IgGs) greatly increased their apparent affinities (KD = 0.08–1.0 nM), presumably due to the effects of avidity, without compromising their non-aggregating properties and thermal stability. Furthermore, two of the mAbs (D12 and C2) significantly showed neutralizing activities on pseudo-typed and authentic SARS-CoV-2. Given their desirable properties and neutralizing activities, we anticipate that these human anti-SARS-CoV-2 mAbs would be suitable reagents to be further developed as antibody therapeutics to treat COVID-19, as well as for diagnostics and research tools.


Sign in / Sign up

Export Citation Format

Share Document