scholarly journals Seismic Behavior of RC Moment Resisting Structures with Concrete Shear Wall under Mainshock-aftershock Seismic Sequences

Author(s):  
Omid Karimzade Soureshjani ◽  
Ali Massumi

Abstract A structure may subject to several aftershocks after a mainshock. In many seismic design provisions, the effect of the seismic sequences is not directly considered or underestimated. This paper studies the seismic behavior of RC moment-resisting structures with concrete shear wall under seismic sequences. Two three-dimensional structures of short and medium height were designed and analyzed. The former models were studied under a group of real mainshock-aftershock seismic sequences. The models were loaded and designed according to the fourth edition of the Iranian seismic code of standard no. 2800 and ACI-318 respectively. Furthermore, the non-linear dynamic time-history finite element analysis of models was performed via the explicit method. The parameters of maximum displacement, inter-story drift ratio, residual displacement, and finally the effect of the ratio of aftershock acceleration to mainshock acceleration were investigated and assessed. Due to the high lateral stiffness of shear walls, parallel with the complete elastic behavior, aftershocks cause no growth in inter-story drift ratio and relative displacement in the short structure model. In contrast, compared to the structure under the solely mainshock, the medium height structure model under seismic sequences showed significant growth in the amount of relative displacement (even more than 50% growth), inter-story drift ratio, plastic strain, and residual displacement (almost 30% growth). Furthermore, unlike the moment-resisting frame structures, models showed no significant growth in the drift ratio with the height. Assessments indicated that the ratio of aftershock to mainshock acceleration is a determinative parameter in structural behavior under seismic sequences.

2014 ◽  
Vol 638-640 ◽  
pp. 1932-1936 ◽  
Author(s):  
Jian Hua Shao ◽  
Qun Wu

The seismic behavior factor of moment resisting steel frame-steel plate shear wall under two different horizontal loading patterns was investigated according to the maximum inter-story drift ratio reaching 1/50. It could be achieved with the same calculated standard as the foreign codes and the determined behavior factor was compared with foreign research results. The method using the software SAP2000 to calculate seismic behavior factor according to the maximum inter-story drift ratio reaching 1/50 was presented and the specific example was used to elaborate the operating process. The seismic behavior factor R, the overstrength factor RΩ and the ductility reduction factor Rμ of 10-storey 3-span steel frame-steel plate shear wall under the inverted triangle load are respectively 6.07, 2.96 and 2.05. while they are respectively 7.2, 3.37 and 2.13 under the uniform load. Finally, it can be concluded that the economic and reasonable design goals are achieved for this structure.


2021 ◽  
Author(s):  
Omid Karimzade Soureshjani ◽  
Gholamreza Nouri

Abstract A mainshock is usually accompanied by a group of ground motions. In many design codes, the effects of the seismic sequences have been neglected or underestimated. Aftershocks can increase structural damage or even cause failure. The current study evaluated the seismic behavior of a rehabilitated and as-built RC structure under real scaled mainshock-aftershocks using nonlinear analysis. Verification was done in two modes. The inter-story drift ratio, maximum residual, and relative displacements were studied. The seismic study of the as-built structure showed that the residual displacement grew, on average, more than 90% under the mainshock-aftershock sequence compared to the mainshock-only record. A beam-column bonded CFRP rehabilitation strategy using six layers of T-700 CFRP was chosen based on the specific performance level. The strategy showed the ability to transfer the plastic strain from the columns to the beams, which could be considered as a change from a weak column-strong beam concept to a strong column-weak beam concept. Compared to the as-built structure under the seismic sequences, the rehabilitated structure showed an average growth of 78% in the first-story drift ratio, which was significant. Unlike the as-built structure, seismic sequences caused no growth drift in the rehabilitated structure. It also was observed that the ratio of aftershock PGA to mainshock PGA could have an intensive effect on the seismic behavior of both rehabilitated and as-built structures.


2013 ◽  
Vol 753-755 ◽  
pp. 581-584
Author(s):  
Kang Min Lee ◽  
Keun Yeong Oh ◽  
Liu Yi Chen ◽  
Rui Li

This paper experimentally presents the effects of different bolted connection types on the seismic performance of column-tree steel moment connections used in moment resisting frames. Two full scale test specimens were fabricated and tested: one specimen with slip critical bolted beam splices and the other one with bearing type bolted beam splices. The bearing type splice specimen was expected an improved deformation capacity by means of bolt slippage. The experimental results showed that the slip critical splice specimen successfully developed ductile behavior without brittle fracture until 5% story drift ratio, however for the bearing type splice specimen, the beam bottom flange fractured at 4.0% story drift ratio due to stress concentration around the weld access hole area. However the energy dissipation capacity of the bearing type splice specimen was better than that of the slip critical splice specimen until 4.0% story drift ratio.


2021 ◽  
Vol 933 (1) ◽  
pp. 012008
Author(s):  
A H Prathama ◽  
M Teguh ◽  
F Saleh

Abstract The growing growth of human activities has led to changes in housing patterns in urban areas. The land crisis in urban areas has made land prices uneconomical, so buildings are designed vertically. One solution to resist earthquakes in multi-story buildings is to add a shear wall structure with the proper profile and layout. Shear wall designs with variations influence the base shear, drift ratio, lateral deflection, and story drift patterns. This study presents the structural response comparison of buildings against variations in the profile and layout of shear walls subjected to earthquake loads. Force Based Design method utilizing the response spectrum approach was adopted in the analysis and carried out using SAP200. Six structural models comprise a frame without shear walls, three L-profile shear walls, two I-profile (straight) shear walls. The simulation results of the overall structural models show that the profile and layout configuration of shear walls in the frame structure of a multi-story building correlates directly to the performance of base shear, drift ratio, and story drift with relatively comparative conditions.


2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


1993 ◽  
Vol 119 (6) ◽  
pp. 1885-1902 ◽  
Author(s):  
Stephen P. Schneider ◽  
Charles W. Roeder ◽  
James E. Carpenter

Sign in / Sign up

Export Citation Format

Share Document