scholarly journals Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics

Author(s):  
Jingjing Dong ◽  
Jingquan He ◽  
Zeyu Zhang ◽  
Wei Zhang ◽  
Yixi Li ◽  
...  

Abstract Background Lysine acetylation (Kac) favors gene transcription and activates various genes involved in the regulation of oncogenesis, whereas the acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. We performed lysine acetylation analyses to achieve a comprehensive profile and revealed the specific pathogenesis in patients with OSCC. Methods Liquid chromatography − tandem mass spectrometry (LC-MS/MS) was utilized to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. Results Among the upregulated different acetylation proteins (DAPs), the biological process of GO analysis was closely related to cellular response to regulation of apoptotic process, and regulation of programmed cell death. KEGG enrichment analysis was associated with HIF-1 signaling pathway, ferroptosis, and JAK-STAT signaling pathway. In PPI network, seven differently Kac proteins (SRSF1, HNPNPM, PRPF8, DHX9, DHX15, RBMX, SNRPG) in MCODE1 and the top 30 hub gene involved in mRNA splicing process and spliceosome pathway. Six differently Kac modified proteins of RPS15A, RPL11, RPS11, RPS3, RPL24, RPL19 in MCODE1 was enriched in ribosome pathway, particular lower expression of RPS3, RPL24 and RPL19 were related to the overall survival of OSCC. Conclusion This study contributes a foundation for understanding the functions of Kac modification in OSCC and investigates lysine acetylation on proteins involved in ribosome pathway, particularly the ones that acted as hub genes and related to the OSCC survival, which may be a potential therapeutic direction of OSCC in the future.

2020 ◽  
Author(s):  
Fazhan Wang ◽  
Jun Zheng ◽  
Yongyong Yang ◽  
Jie Yang ◽  
Ting Luo ◽  
...  

Abstract Background Naa10p (N-α-Acetyltransferase 10 protein) was reported to be involved in tumor invasion and metastasis in several of tumors. However, the role and mechanism of Naa10p mediated invasion and metastasis in oral squamous cell carcinoma (OSCC) remains undetermined. Methods The functional role of Naa10p in OSCC cells were determined using Transwell assay in vitro and xenograft tumorigenesis in nude mice. Immunoprecipitation, GST-pull down assays and immunofluorescence were performed to confirm the interaction between Naa10p and RelA/p65 in OSCC cells. Lastly, luciferase reporter assays, chromatin immunoprecipitation (ChIP) and western blot were used to evalute the effect of Naa10p expression on the Pirh2-p53 signaling pathway. Results Naa10p inhibits cell migration and invasion in vitro and attenuates the xenograft tumorigenesis in nude mice. Mechanistically, there is a physical interaction between Naa10p and RelA/p65 in OSCC cells, thereby preventing RelA/p65-mediated transcriptional activation of Pirh2. Consequently, inhibition of Pirh2 increased p53 level and suppressed the expression of p53 downstream targets, MMP-2 and MMP-9. Conclusion Naa10p function as a tumor metastasis suppressor in the progression of OSCC by targeting Pirh2-p53 axis, and might be a prognostic marker as well as a therapeutic target for OSCC.


2020 ◽  
Vol 29 (4) ◽  
pp. 521-529
Author(s):  
Yong Yin ◽  
Keke Yang ◽  
Juanjuan Li ◽  
Peng Da ◽  
Zhenxin Zhang ◽  
...  

OBJECTIVE: To assess the expression levels of IFITM1 in human tissue samples and laryngeal squamous cell carcinoma (LSCC) cells, and to explore the potential mechanisms of IFITM1 in LSCC progression. METHODS: Quantitative PCR and immunohistochemical (IHC) assays were performed to detect IFITM1 expression in 62 LSCC tissues and corresponding normal tissues. We further detected the effects of IFITM1 on the proliferation, migration and invasion of LSCC cells and NF-κB signaling pathway through colony formation assay, wound healing assay and transwell assay, respectively. RESULTS: We demonstrated the possible involvement of IFITM1 in the progression of LSCC. We found the upregulated expression of IFITM1 in human LSCC tissues and cells, and analyzed the correlations between IFITM1 expression and osteopontin. Our data further confirmed that IFITM1 affected cell proliferation, migration, and invasion of LSCC cells via the regulation of NF-κB signaling pathway. CONCLUSIONS: We investigated the potential involvement of IFITM1 in the progression of LSCC, and therefore confirmed that IFITM1 was a potential therapeutic target for LSCC.


2016 ◽  
Vol 10 (6) ◽  
pp. 895-909 ◽  
Author(s):  
Hsuan-Yu Peng ◽  
Shih-Sheng Jiang ◽  
Jenn-Ren Hsiao ◽  
Michael Hsiao ◽  
Yuan-Ming Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document