scholarly journals Gene Expression Meta-Analysis of Major Depressive Disorder and Its Relationship with Alzheimer’s Disease

Author(s):  
Ruihan WANG ◽  
Jinghao DUAN ◽  
Quan ZHENG ◽  
Xueping CHEN

Abstract Introduction: Major depressive disorder (MDD) and Alzheimer’s disease (AD) are often co-existing in the elderly and have been suggested to share common pathological and physiological links. Understanding the connections between these two diseases could benefit for revealing new possible strategies of early diagnosis and therapeutic intervention. Methods: we conducted a meta-analysis to identify differentially expressed genes (DEGs) in MDD microarray datasets including 180 MDD and 281 control prefrontal cortex of brain samples. Using identified DEGs, we performed gene ontology (GO), pathway and protein-protein interaction (PPI) analysis. Results: We identified 1400 DEGs, of which 846 were upregulated and 554 was downregulated in MDD. 198 DEGs were found over-lapping between AD and MDD compared with the previous study on AD. The over-lapping DEGs were particularly enriched in the protein binding of gene ontology and Signal Transduction, Immune System, Metabolism of proteins as for pathways. CDC42 was the most important gene in PPI network which had the most connections with other genes.Conclusion: Our study shows that MDD and AD share significant common DEGs and pathways and add some new potential perspectives to the comprehensive neurobiologic model between MDD and the development of AD.

Brain ◽  
2018 ◽  
Vol 141 (12) ◽  
pp. 3457-3471 ◽  
Author(s):  
Jiayuan Xu ◽  
Qiaojun Li ◽  
Wen Qin ◽  
Mulin Jun Li ◽  
Chuanjun Zhuo ◽  
...  

Abstract Depression increases the conversion risk from amnestic mild cognitive impairment to Alzheimer’s disease with unknown mechanisms. We hypothesize that the cumulative genomic risk for major depressive disorder may be a candidate cause for the increased conversion risk. Here, we aimed to investigate the predictive effect of the polygenic risk scores of major depressive disorder-specific genetic variants (PRSsMDD) on the conversion from non-depressed amnestic mild cognitive impairment to Alzheimer’s disease, and its underlying neurobiological mechanisms. The PRSsMDD could predict the conversion from amnestic mild cognitive impairment to Alzheimer’s disease, and amnestic mild cognitive impairment patients with high risk scores showed 16.25% higher conversion rate than those with low risk. The PRSsMDD was correlated with the left hippocampal volume, which was found to mediate the predictive effect of the PRSsMDD on the conversion of amnestic mild cognitive impairment. The major depressive disorder-specific genetic variants were mapped into genes using different strategies, and then enrichment analyses and protein–protein interaction network analysis revealed that these genes were involved in developmental process and amyloid-beta binding. They showed temporal-specific expression in the hippocampus in middle and late foetal developmental periods. Cell type-specific expression analysis of these genes demonstrated significant over-representation in the pyramidal neurons and interneurons in the hippocampus. These cross-scale neurobiological analyses and functional annotations indicate that major depressive disorder-specific genetic variants may increase the conversion from amnestic mild cognitive impairment to Alzheimer’s disease by modulating the early hippocampal development and amyloid-beta binding. The PRSsMDD could be used as a complementary measure to select patients with amnestic mild cognitive impairment with high conversion risk to Alzheimer’s disease.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Zhenhuang Zhuang ◽  
Ruotong Yang ◽  
Wenxiu Wang ◽  
Lu Qi ◽  
Tao Huang

Abstract Background Growing evidence has shown that alterations in the gut microbiota composition were associated with a variety of neuropsychiatric conditions. However, whether such associations reflect causality remains unknown. We aimed to reveal the causal relationships among gut microbiota, metabolites, and neuropsychiatric disorders including Alzheimer’s disease (AD), major depressive disorder (MDD), and schizophrenia (SCZ). Methods A two-sample bi-directional Mendelian randomization analysis was performed by using genetic variants from genome-wide association studies as instrumental variables for gut microbiota, metabolites, AD, MDD, and SCZ, respectively. Results We found suggestive associations of host-genetic-driven increase in Blautia (OR, 0.88; 95%CI, 0.79–0.99; P = 0.028) and elevated γ-aminobutyric acid (GABA) (0.96; 0.92–1.00; P = 0.034), a downstream product of Blautia-dependent arginine metabolism, with a lower risk of AD. Genetically increased Enterobacteriaceae family and Enterobacteriales order were potentially associated with a higher risk of SCZ (1.09; 1.00–1.18; P = 0.048), while Gammaproteobacteria class (0.90; 0.83–0.98; P = 0.011) was related to a lower risk for SCZ. Gut production of serotonin was potentially associated with an increased risk of SCZ (1.07; 1.00–1.15; P = 0.047). Furthermore, genetically increased Bacilli class was related to a higher risk of MDD (1.07; 1.02–1.12; P = 0.010). In the other direction, neuropsychiatric disorders altered gut microbiota composition. Conclusions These data for the first time provide evidence of potential causal links between gut microbiome and AD, MDD, and SCZ. GABA and serotonin may play an important role in gut microbiota-host crosstalk in AD and SCZ, respectively. Further investigations in understanding the underlying mechanisms of associations between gut microbiota and AD, MDD, and SCZ are required.


Sign in / Sign up

Export Citation Format

Share Document