scholarly journals Dynamic changes in Antibiotic Resistance Genes and Gut Microbiota after H. Pylori Eradication Therapies

Author(s):  
LINGLING WANG ◽  
Haobin Yao ◽  
Tereasa Tong ◽  
KS Lau ◽  
Suet Yi Leung ◽  
...  

Abstract Background: Short-term antibiotics exposure is associated with alterations in microbiota and antibiotic resistance genes (ARGs) in the human gut. While antibiotics are critical in the successful eradication of Helicobacter pylori, the short-term and long-term impacts on the composition and quantity of antibiotics resistance genes after H. pylori eradication is unclear. This study used whole genome shotgun metagenomic of stool samples to characterize the gut microbiota and ARGs, before and after H. pylori eradication therapy. Results: Forty-four H. pylori-infected patients were recruited including 21 treatment naïve patients who received clarithromycin-based triple therapy (CLA group) and 23 patients who failed previous therapies, in which 10 received levofloxacin-based quadruple therapy [LEVO group] and 13 received other combinations [OTHER group] in the current study. Stool samples were collected at baseline (before current treatment), 6-week and 6-month after eradication therapy. At baseline, there was only a slight difference among the three groups on ARGs and gut microbiota. After eradication therapy, there was a transient but significant increase in gut ARGs 6-week post-therapy, among which the LEVO group had the most significant ARGs alteration compared to other two groups. For treatment naïve patients, those with higher ARG richness and ErmF abundance were prone to fail CLA eradication. For gut microbiota, the bacteria richness decreased at 6-week and there was a significant difference in microbiota community among the three groups at 6-week. Conclusions: Our findings demonstrated the dynamic alterations in gut microbiota and ARGs induced by different eradication therapies, which could influence the choices of antibiotics in eradication therapy.

Chemosphere ◽  
2014 ◽  
Vol 112 ◽  
pp. 1-8 ◽  
Author(s):  
Xuechao Guo ◽  
Su Liu ◽  
Zhu Wang ◽  
Xu-xiang Zhang ◽  
Mei Li ◽  
...  

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Sarah Delaney ◽  
Thi Thuy Do ◽  
Aoife Corrigan ◽  
Richard Murphy ◽  
Fiona Walsh

Antibiotic resistance is regarded as one of the most serious threats to human health worldwide. The rapid increase in resistance rates has been attributed to the extensive use of antibiotics since they became commercially available. The use of antibiotics as growth promotors has been banned in numerous regions for this reason. Mannan-rich fraction (MRF) has been reported to show similar growth-promoting effects to antibiotics. We investigated the effect of MRF on the microbial community, resistome and metabolic pathways within the caecum of commercial broilers at two different timepoints within the growth of the broiler, day 27 and day 34. The data indicated an overall increase in health and economic gain for the producer with the addition of MRF to the diet of the broilers. The only significant difference across the microbial composition of the samples was in the richness of the microbial communities across all samples. While all samples harboured resistance genes conferring resistance to the same classes of antibiotics, there was significant variation in the antimicrobial resistance gene richness across time and treatment and across combinations of time and treatment. The taxa with positive correlation comprised Bacilli and Clostridia. The negative correlation taxa were also dominated by Bacilli, specifically the Streptococcus genera. The KEGG-pathway analysis identified an age-related change in the metabolism pathway abundances of the caecal microflora. We suggest that the MRF-related increases in health and weight gain in the broilers may be associated with changes in the metabolism of the microbiomes rather than the microbial composition. The resistome variations across samples were correlated with specific genera. These data may be used to further enhance the development of feed supplements to reduce the presence of antibiotic resistance genes (ARGs) within poultry. While the ARGs of greatest concern to human or animal health were not detected in this study, it has identified the potential to reduce the presence of ARGs by the increase in specific genera.


Author(s):  
Kassidy O'Malley ◽  
Patrick McNamara ◽  
Walter McDonald

Abstract The global spread of antibiotic resistance genes (ARGs) concomitant with a decrease in antibiotic effectiveness is a major public health issue. While research has demonstrated the impact of various urban sources, such as WWTP effluent, stormwater runoff, and industrial discharge on ARG abundance in receiving waters, the impact of short-term gatherings such as state fairs is not comprehensively understood. The objective of this research was to explore the impact of a 2-week Wisconsin State Fair gathering – over 1.1 million visitors and 7,100 farm animals – on the abundance of the ARG blaTEM, the integrase of the class 1 integron (intI1, a marker for horizontal gene transfer), and the 16S rRNA gene, a marker for total biomass, in an urban stream receiving runoff from the state fair. Stream samples downstream of the state fair were taken before and after the event and quantified via a droplet digital polymerase chain reaction. The absolute abundance of all genes was significantly higher (p<0.05) following the event. This research showcases the prevalence and persistence of ARG contamination in an urban stream before and after a state fair gathering, suggesting that short-term events can be a significant source of ARGs into the environment.


2018 ◽  
Author(s):  
Bálint Kintses ◽  
Orsolya Méhi ◽  
Eszter Ari ◽  
Mónika Számel ◽  
Ádám Györkei ◽  
...  

AbstractThe human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs) that are ancient components of immune defence. Despite important medical relevance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here we show that AMP- and antibiotic-resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics revealed that AMP resistance genes originating from phylogenetically distant bacteria only have a limited potential to confer resistance inEscherichia coli, an intrinsically susceptible species. Third, the phenotypic impact of acquired AMP resistance genes heavily depends on the genetic background of the recipient bacteria. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition of the human microbiota with implications for disease risks.


Sign in / Sign up

Export Citation Format

Share Document