scholarly journals The cellular response to drug perturbation is limited: comparison of large-scale chemogenomic fitness signatures

Author(s):  
Marjan Barazandeh ◽  
Divya Kriti ◽  
Corey Nislow ◽  
Guri Giaever

Abstract BackgroundChemogenomic profiling is a powerful approach towards understanding the genome-wide cellular response to small molecules. Developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, they have not been assessed for reproducibility and accuracy. Here we analyze the two largest independent yeast chemogenomic datasets comprising over 35 million gene-drug interactions and more than 6000 unique chemogenomic profiles; the first from our own academic laboratory and the second from the Novartis Institute of Biomedical Research (NIBR).ResultsCombining the datasets revealed robust genetic interaction response signatures that point to common mechanism of action, despite the substantial differences in experimental and analytical pipelines. We previously reported that the cellular response to small molecules is limited and can be described by a network of 45 chemogenomic signatures. In the present study, we show that the majority of these signatures (66%) are also found in the companion dataset, providing further support for their biological relevance as systems-level, small molecule response systems. ConclusionsOur results demonstrate the robustness of chemogenomic fitness profiling in yeast, while offering guidelines for performing other high-dimensional comparisons including parallel CRISPR screens in mammalian cells.

2017 ◽  
Author(s):  
Raamesh Deshpande ◽  
Justin Nelson ◽  
Scott W. Simpkins ◽  
Michael Costanzo ◽  
Jeff S. Piotrowski ◽  
...  

Large-scale genetic interaction screening is a powerful approach for unbiased characterization of gene function and understanding systems-level cellular organization. While genome-wide screens are desirable as they provide the most comprehensive interaction profiles, they are resource and time-intensive and sometimes infeasible, depending on the species and experimental platform. For these scenarios, optimal methods for more efficient screening while still producing the maximal amount of information from the resulting profiles are of interest.To address this problem, we developed an optimal algorithm, called COMPRESS-GI, which selects a small but informative set of genes that captures most of the functional information contained within genome-wide genetic interaction profiles. The utility of this algorithm is demonstrated through an application of the approach to define a diagnostic mutant set for large-scale chemical genetic screens, where more than 13,000 compound screens were achieved through the increased throughput enabled by the approach. COMPRESS-GI can be broadly applied for directing genetic interaction screens in other contexts, including in species with little or no prior genetic-interaction data.


2020 ◽  
Vol 295 (50) ◽  
pp. 16906-16919
Author(s):  
Jae-Hong Kim ◽  
Yeojin Seo ◽  
Myungjin Jo ◽  
Hyejin Jeon ◽  
Young-Seop Kim ◽  
...  

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


PLoS ONE ◽  
2009 ◽  
Vol 4 (3) ◽  
pp. e4923 ◽  
Author(s):  
Maria Werner ◽  
Szabolcs Semsey ◽  
Kim Sneppen ◽  
Sandeep Krishna

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yulei Zhao ◽  
Kathrin Tyrishkin ◽  
Calvin Sjaarda ◽  
Prem Khanal ◽  
Jeff Stafford ◽  
...  

Abstract Mapping genetic interactions in mammalian cells is limited due to technical obstacles. Here we describe a method called TCGI (tRNA-CRISPR for genetic interactions) to generate a high-efficient, barcode-free and scalable pairwise CRISPR libraries in mammalian cells for identifying genetic interactions. We have generated a genome- wide library to identify genes genetically interacting with TAZ in cell viability regulation. Validation of candidate synergistic genes reveals the screening accuracy of 85% and TAZ-MCL1 is characterized as combinational drug targets for non-small cell lung cancer treatments. TCGI has dramatically improved the current methods for mapping genetic interactions and screening drug targets for combinational therapies.


2021 ◽  
Author(s):  
Yuting Chen ◽  
Eriona Hysolli ◽  
Anlu Chen ◽  
Stephen Casper ◽  
Songlei Liu ◽  
...  

Large-scale recoding has been shown to enable novel amino acids, biocontainment and viral resistance in bacteria only so far. Here we extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~ 40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding. This demonstrates the feasibility of recoding, and multiplex editing in mammalian cells.


2020 ◽  
Vol 6 (40) ◽  
pp. eaaz7628
Author(s):  
David B. Lombard ◽  
William J. Kohler ◽  
Angela H. Guo ◽  
Christi Gendron ◽  
Melissa Han ◽  
...  

Aging is the dominant risk factor for most chronic diseases. Development of antiaging interventions offers the promise of preventing many such illnesses simultaneously. Cellular stress resistance is an evolutionarily conserved feature of longevity. Here, we identify compounds that induced resistance to the superoxide generator paraquat (PQ), the heavy metal cadmium (Cd), and the DNA alkylator methyl methanesulfonate (MMS). Some rescue compounds conferred resistance to a single stressor, while others provoked multiplex resistance. Induction of stress resistance in fibroblasts was predictive of longevity extension in a published large-scale longevity screen in Caenorhabditis elegans, although not in testing performed in worms and flies with a more restricted set of compounds. Transcriptomic analysis and genetic studies implicated Nrf2/SKN-1 signaling in stress resistance provided by two protective compounds, cardamonin and AEG 3482. Small molecules identified in this work may represent attractive tools to elucidate mechanisms of stress resistance in mammalian cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yulei Zhao ◽  
Kathrin Tyrishkin ◽  
Calvin Sjaarda ◽  
Prem Khanal ◽  
Jeff Stafford ◽  
...  

2019 ◽  
Author(s):  
Peter C DeWeirdt ◽  
Kendall R Sanson ◽  
Ruth E Hanna ◽  
Mudra Hegde ◽  
Annabel K Sangree ◽  
...  

Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs for mammalian cells, however, is labor-intensive, time-consuming, and impossible in some cell types. Here we present an approach to create isogenic pairs of cells and screen them with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We queried the anti-apoptotic genes BCL2L1 and MCL1, and the DNA damage repair gene PARP1, via 25 genome-wide screens across 4 cell lines. For all three genes, we identify a rich set of both expected and novel buffering and synthetic lethal interactions. Further, we compare the interactions observed in genetic space to those found when targeting these genes with small molecules and identify hits that may inform the clinical uses for these inhibitors. We anticipate that this methodology will be broadly useful to comprehensively study genes of interest across many cell types.


2018 ◽  
Author(s):  
Nadège Liaud ◽  
Max A. Horlbeck ◽  
Luke A. Gilbert ◽  
Ketrin Gjoni ◽  
Jonathan S. Weissman ◽  
...  

ABSTRACTIdentifying small molecules that inhibit protein synthesis by selectively stalling the ribosome constitutes a new strategy for therapeutic development. Compounds that inhibit the translation of PCSK9, a major regulator of low-density lipoprotein cholesterol, have been identified that reduce LDL cholesterol in preclinical models and that affect the translation of only a few off-target proteins. Although some of these compounds hold potential for future therapeutic development, it is not known how they impact the physiology of cells or ribosome quality control pathways. Here we used a genome-wide CRISPRi screen to identify proteins and pathways that modulate cell growth in the presence of high doses of a selective PCSK9 translational inhibitor, PF-06378503 (PF8503). The two most potent genetic modifiers of cell fitness in the presence of PF8503, the ubiquitin binding protein ASCC2 and helicase ASCC3, bind to the ribosome and protect cells from toxic effects of high concentrations of the compound. Surprisingly, translation quality control proteins Pelota (PELO) and HBS1L sensitize cells to PF8503 treatment. In genetic interaction experiments, ASCC3 acts together with ASCC2, and functions downstream of HBS1L. Taken together, these results identify new connections between ribosome quality control pathways, and provide new insights into the selectivity of compounds that stall human translation that will aid the development of next-generation selective translation stalling compounds to treat disease.


2020 ◽  
pp. 1-8
Author(s):  
Wesley H. Brooks ◽  
Yuri Pevzner ◽  
Elza Pevzner ◽  
Kenyon G. Daniel ◽  
Wayne C. Guida ◽  
...  

In recent years, evidence has mounted that a particular form of vitamin E (its δ-tocotrienol variant) may have cellular functions beyond that of an antioxidant, a role commonly ascribed to the tocotrienol class of compounds. In particular, numerous studies of δ-tocotrienol’s effect on cancer cells have identified it as a potent anticancer and antitumor agent. However, this important revelation of potential therapeutic use poses a series of new challenges, with arguably the most important being the elucidation of the precise mechanism of action responsible for the anticancer activity of δ-tocotrienol. As an initial step to address this question, we have used a computational tool, Virtual Target Screening (a molecular docking-based tool that identifies potential binding partners for small molecules), to identify potential biomolecular targets of δ-tocotrienol. Then, to gain a consensus as to the type of biomolecular entity that could be a target for δ-tocotrienol, we utilized PharmMapper and PASS (a ligand-based chemoinformatic approach), and ProBiS (a tool that analyses binding site similarities across known proteins). The results of our multipronged computational consensus-seeking approach showed that such a strategy can identify potential cellular targets of small molecules. This is evidenced by our identification of estrogen receptor-beta, a protein that has been previously shown to bind δ-tocotrienol, which elicited a cellular response. This study supports the use of such a computational approach as an initial step in target identification to avoid time-consuming, costly large-scale experimental screening, greatly reducing the experimental work to just one or a few candidate proteins.


Sign in / Sign up

Export Citation Format

Share Document