scholarly journals Genetic Diversity and Differentiation of Alpinia Oxyphylla Miquel as Revealed by AFLP Markers

Author(s):  
Kun Pan ◽  
Jie Hou ◽  
Wenqin Su ◽  
Bo Yi ◽  
Bingmiao Gao

Abstract In this study, we analyzed the genetic diversity and population structure of 90 A. oxyphylla accessions from Hainan island using amplified fragment length polymorphism (AFLP) markers. These 90 accessions were composed of 15 populations from different geographic locations and divided into 4 clusters (A, B, C, and D) using the Unweighted pair group method based on arithmetic average (UPGMA). The genetic similarity between individuals ranged from 0.47 to 1.00 (average of 0.74), and most accessions from the same geographic population were grouped together. Principal coordinate analysis (PCA) showed a clear distinction among three clusters (A, B and C). Based on the loci information, the population structure analysis results by STRUCTURE and TESS were consistent with the clustering of PCA. Nine AFLP primer combinations generated 1537 polymorphic bands displaying rich polymorphism, thus indicating high genetic diversity among these 15 populations with an average Nei’s gene diversity of 0.1328 ± 0.160. In conclusion, AFLP markers efficiently analyzed the genetic diversity in A. oxyphylla, demonstrating highly significant genetic variation within and among populations. However, intrapopulation genetic variance was much higher than interpopulation variability, suggesting that efforts should be made for in situ germplasm conservation and resistant varieties cultivation.

2020 ◽  
Author(s):  
Yibing Zeng ◽  
Tao Xiong ◽  
Bei Liu ◽  
Elma Carstens ◽  
Xiangling Chen ◽  
...  

Phyllosticta citriasiana is the causal agent of citrus tan spot, an important pomelo disease in Asia. At present, there is little or no information on the epidemiology or population structure of P. citriasiana. Using simple sequence repeat (SSR) markers, 94 isolates obtained from three pomelo production regions in southern/southeastern China were analyzed. The analyses showed high genetic diversity in each of the three geographic populations. A STRUCTURE analysis revealed two genetic clusters among the 94 isolates, one geographic population was dominated by genotypes in one cluster while the other two geographic populations were dominated by genotypes of the second cluster. P. citriasiana has a heterothallic mating system with two idiomorphs, MAT1-1 and MAT1-2. Analyses using mating type-specific primers revealed that both mating types were present in all three geographic populations, and in all three populations the mating type ratios were in equilibrium. Although the sexual stage of the fungus has not been discovered yet, analyses of allelic associations indicated evidence for sexual and asexual reproduction within and among populations. Despite the observed genetic differentiation among the three geographic populations, evidence for long-distance gene flow was found.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Salvatore Bordonaro ◽  
Anna Maria Guastella ◽  
Andrea Criscione ◽  
Antonio Zuccaro ◽  
Donata Marletta

The genetic variability of Pantesco and other two Sicilian autochthonous donkey breeds (Ragusano and Grigio Siciliano) was assessed using a set of 14 microsatellites. The main goals were to describe the current differentiation among the breeds and to provide genetic information useful to safeguard the Pantesco breed as well as to manage Ragusano and Grigio Siciliano. In the whole sample, that included 108 donkeys representative of the three populations, a total of 85 alleles were detected. The mean number of alleles was lower in Pantesco (3.7), than in Grigio Siciliano and Ragusano (4.4 and 5.9, resp.). The three breeds showed a quite low level of gene diversity (He) ranging from 0.471 in Pantesco to 0.589 in Grigio. The overall genetic differentiation index (Fst) was quite high; more than 10% of the diversity was found among breeds. Reynolds’ () genetic distances, correspondence, and population structure analysis reproduced the same picture, revealing that, (a) Pantesco breed is the most differentiated in the context of the Sicilian indigenous breeds, (b) within Ragusano breed, two well-defined subgroups were observed. This information is worth of further investigation in order to provide suitable data for conservation strategies.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 676 ◽  
Author(s):  
Farahani ◽  
Maleki ◽  
Mehrabi ◽  
Kanouni ◽  
Scheben ◽  
...  

Characterization of genetic diversity, population structure, and linkage disequilibrium is a prerequisite for proper management of breeding programs and conservation of genetic resources. In this study, 186 chickpea genotypes, including advanced “Kabuli” breeding lines and Iranian landrace “Desi” chickpea genotypes, were genotyped using DArTseq-Based single nucleotide polymorphism (SNP) markers. Out of 3339 SNPs, 1152 markers with known chromosomal position were selected for genome diversity analysis. The number of mapped SNP markers varied from 52 (LG8) to 378 (LG4), with an average of 144 SNPs per linkage group. The chromosome size that was covered by SNPs varied from 16,236.36 kbp (LG8) to 67,923.99 kbp (LG5), while LG4 showed a higher number of SNPs, with an average of 6.56 SNPs per Mbp. Polymorphism information content (PIC) value of SNP markers ranged from 0.05 to 0.50, with an average of 0.32, while the markers on LG4, LG6, and LG8 showed higher mean PIC value than average. Unweighted neighbor joining cluster analysis and Bayesian-based model population structure grouped chickpea genotypes into four distinct clusters. Principal component analysis (PCoA) and discriminant analysis of principal component (DAPC) results were consistent with that of the cluster and population structure analysis. Linkage disequilibrium (LD) was extensive and LD decay in chickpea germplasm was relatively low. A few markers showed r2 ≥ 0.8, while 2961 pairs of markers showed complete LD (r2 = 1), and a huge LD block was observed on LG4. High genetic diversity and low kinship value between pairs of genotypes suggest the presence of a high genetic diversity among the studied chickpea genotypes. This study also demonstrates the efficiency of DArTseq-based SNP genotyping for large-scale genome analysis in chickpea. The genotypic markers provided in this study are useful for various association mapping studies when combined with phenotypic data of different traits, such as seed yield, abiotic, and biotic stresses, and therefore can be efficiently used in breeding programs to improve chickpea.


2017 ◽  
Vol 30 (1) ◽  
pp. 11-20 ◽  
Author(s):  
M. Khalequzzaman ◽  
M. Z. Islam ◽  
M. A. Siddique ◽  
M. F. R. K. Prince ◽  
E. S. M. H. Rashid ◽  
...  

Assessment of genetic diversity is essential for germplasm characterization, utilization and conservation. Genetic diversity of 31 Aus rice landraces of Bangladesh was assessed using 36 SSR (simple sequence repeats) markers. A total of 141 alleles were detectedand the number of alleles per locus ranged from two (RM1216, RM145, RM282, RM293, RM567and RM496) to 10 alleles (RM304), with an average of 3.92. The gene diversity varied from 0.06 (RM145) to 0.80 (RM304) with an average of 0.54 and the PIC values ranged from 0.06 (RM145) to 0.78 (RM304), with an average of 0.48.PIC value revealed that RM304 was the best marker for characterizing the studied Aus rice genotypes. The dendrogram from unweighted pair-group method with arithmetic average clustering of markers classified the genotypes into five major groups with a coefficient of 0.49. Two and three-dimensional graphical views of Principal Coordinate Analysis (PCA) revealed that the genotypes Hashikalmi, Chaina, Puitraaijang, Saithsail, Kuchmuch, Kalodhan, Ausdhan and Itcriewere found far away from the centroid of the cluster and can be selected as parents for further breeding programs.The results provided some useful implications for establishment of sovereignty of Bangladeshi rice gene pool. This information will provide maximum selection of diverse parents, background selection during backcross breeding programs and assist in broadening germplasm-based rice breeding programs in future.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 592
Author(s):  
Bei Cui ◽  
Ping Deng ◽  
Sheng Zhang ◽  
Zhong Zhao

Ancient trees are famous for their life spans of hundreds or even thousands of years. These trees are rare, a testament to history and are important for scientific research. Platycladus orientalis, with the longest life span and a beautiful trunk, has become the most widely planted tree species and is believed to be sacred in China. Extensive declines in habitat area and quality pose the greatest threats to the loss of genetic diversity of ancient P. orientalis trees in the middle reaches of the Yellow River. Strengthening the protection of P. orientalis genetic resources is of great significance for the long-term development of reasonable conservation and breeding strategies. To better understand the genetic diversity and population structure of P. orientalis, we successfully analyzed four polymorphic chloroplast simple sequence repeat (cpSSR) loci and applied them to diversity and population structure analyses of 202 individuals from 13 populations in the middle reaches of the Yellow River. Based on the cpSSR data, 16 alleles were detected across 202 individuals, and a moderate level of genetic diversity was inferred from the genetic diversity parameters (H = 0.367 and AR = 1.964). The mean pairwise genetic differentiation coefficient (Fst) between populations was 0.153, indicating relatively high genetic population differentiations. Analysis of molecular variance (AMOVA) showed that only 8% of the variation occurred among populations. Structure analysis divided the 13 P. orientalis populations into two groups with no significant geographic population structure, which was consistent with the unweighted pair group method with arithmetic mean (UPGMA) and Mantel test results. These results may indicate that transplanting and cultivation by ancient human activities are the main factors responsible for the revealed pattern of genetic differentiation of ancient P. orientalis populations. Our research is of great significance for the future establishment of protection schemes and scientific breeding of P. orientalis.


Author(s):  
Somayeh Farahani ◽  
Mojdeh Maleki ◽  
Rahim Mehrabi ◽  
Homayoun Kanouni ◽  
Reza Talebi

Characterization of genetic diversity, population structure and linkage disequilibrium is prerequisite for proper management of breeding programs and conservation of genetic resources. In this study, 186 chickpea genotypes including advanced “Kabuli” breeding lines and Iranian landrace “Desi” chickpea genotypes were genotyped using DArTseq-Based SNP markers. Out of 3339 SNPs, 1152 markers with known chromosomal position were selected for genome diversity analysis. The number of mapped SNP markers varied from 52 (LG8) to 378 (LG4), with an average of 144 SNPs per linkage group. The chromosome size that covered by SNPs varied from 16236.36 kbp (LG8) to 67923.99 kbp (LG5), while LG4 showed higher number of SNPs, with an average of 6.56 SNPs per Mbp. Polymorphism information content (PIC) value of SNP markers ranged from 0.05 to 0.50, with an average of 0.32, while the markers on LG4, LG6 and LG8 showed higher mean PIC value than average. Un-weighted Neighbor Joining cluster analysis and Bayesian-based model population structure grouped chickpea genotypes into four distinct clusters. Principal component analysis (PCoA) and Discriminant Analysis of Principal Component (DAPC) results were consistent with that of the cluster and population structure analysis. Linkage disequilibrium (LD) was extensive and LD decay in chickpea germplasm was relatively low. A few markers showed r2≥0.8, while 2961 pairs of markers showed complete LD (r2=1) and a huge LD block was observed on LG4. High genetic diversity and low kinship value between pairs of genotypes suggesting the presence of a high genetic diversity among studied chickpea genotypes. This study also demonstrated the efficiency of DArTseq-based SNP genotyping for large scale genome analysis in chickpea. The genotypic markers provided in this study are useful for various association mapping studies when combined with phenotypic data of different traits such as seed yield, abiotic and biotic stresses and therefore can be efficiently used in breeding programs to improve chickpea.


2020 ◽  
pp. 1-10
Author(s):  
Saheb Pal ◽  
Muttanna Revadi ◽  
RN Thontadarya ◽  
DC Lakshmana Reddy ◽  
B. Varalakshmi ◽  
...  

Abstract Most of the modern-day improved watermelon varieties succumb to various biotic and abiotic stresses mainly because of their narrow genetic base. Insights into the genetic diversity and population structure are crucial for broadening the genetic base and improving the adaptive value. The present experiment was conducted to study the genetic diversity and population structure of a germplasm panel comprising 336 Citrullus sp. accessions. Another objective was to formulate a core collection of Indian Citrullus sp. accessions. Data from 23 highly polymorphic microsatellite markers were used for genetic diversity and population structure analysis while both molecular and phenotypic data from 17 traits were used to formulate the core set. The markers yielded a total of 69 alleles with an average of three alleles per locus. Initially, the accessions clustered into two populations and an admixture group. Intra-population analysis revealed three and two statistically distinct subpopulations in Pop I and Pop II, respectively. The exotic collections were predominant in Pop I-A, Pop II-A and Pop II-B while the Indian accessions were preponderant in Pop I-B and Pop I-C. Pop I-B recorded the maximum magnitude of gene diversity and the highest number of alleles. The well-adapted Indian landraces could be deployed in future watermelon improvement programmes. The formulated core collection (n = 46; 23.71% of the entire collection studied) would ease in maintenance of the diversity present among indigenous Citrullus sp. accessions; would ease trait search while exploring Indian diversity and can be pooled with other collection(s) to form a global core of watermelon.


2016 ◽  
Vol 15 (4) ◽  
pp. 355-365 ◽  
Author(s):  
Dipnarayan Saha ◽  
Rajeev Singh Rana ◽  
Lalit Arya ◽  
Manjusha Verma ◽  
M. V. Channabyre Gowda ◽  
...  

AbstractFungal blast disease is one of the major constraints in finger millet production. Breeding for disease resistance in finger millet, needs characterization of genetic polymorphism among and between the resistant and susceptible genotypes. In total, 67 finger millet genotypes, which are resistant or susceptible to fungal blast disease, were analysed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers to assess genetic variations and select diverse parents. Twelve each of SRAP and SSR primers produced 95.1 and 93.1% polymorphic bands and grouped them into unweighted pair-group method with arithmetic average clusters. Two of the finger millet genotypes, IE 4709 (blast resistant) and INDAF 7 (susceptible) were distinguished as most diverse genotypes as parents. Several genotype-specific bands observed with SSR primers are potential in developing genotype-specific markers. A high genetic diversity within the resistant and susceptible genotypes, rather than between them, was revealed through Nei's gene diversity (h) index and analysis of molecular variance. The finding helps us to understand the extent of genetic polymorphism between blast disease resistant and susceptible finger millet genotypes to exploit in resistance breeding programs.


2011 ◽  
Vol 10 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Lirio L. Dal Vesco ◽  
Valdir M. Stefenon ◽  
Leocir J. Welter ◽  
Neusa Steiner ◽  
Miguel P. Guerra

Biotechnological techniques comprise useful tools for the conservation of endangered plant genetic resources. In the present work, polymorphism and usefulness of amplified fragment length polymorphism (AFLP) markers in assessing the genetic diversity in populations of Billbergia zebrina were investigated in nodular cultures and adult plants of the species. AFLP markers revealed moderate-to-high genetic diversity based on the estimations of Nei's gene diversity (mean He = 0.28), Shannon index of diversity (mean HS = 0.48) and the number of polymorphic fragments (mean of 56.17 polymorphic fragments over six primer pairs). In comparison to published studies of population genetics performed in other bromeliad species, the present study suggests that natural populations of B. zebrina likely maintain high levels of genetic diversity, an important feature towards conservation of plant genetic resources. The results obtained reveal that AFLP markers comprise a powerful tool in order to assess the levels of genetic diversity in natural populations of this endangered species. Integrating AFLP markers with in vitro propagation techniques is understood as an adequate strategy for conservation programmes of this species.


Author(s):  
Jedidah Wangari Mwangi ◽  
Oduor Richard Okoth ◽  
Muchemi Peterson Kariuki ◽  
Ngugi Mathew Piero

Abstract Background Mung bean is a pulse crop principally grown in the tropic and subtropic parts of the world for its nutrient-rich seeds. Seven mung beans accessions from Eastern Kenya were evaluated using thirteen phenotypic traits. In addition, 10 SSR markers were used to determine their genetic diversity and population structure. This aimed at enhancing germplasm utilization for subsequent mung bean breeding programs. Results Analysis of variance for most of the phenology traits showed significant variation, with the yield traits recording the highest. The first three principal components (PC) explained 83.4% of the overall phenotypic variation, with the highest (PC1) being due to variation of majority of the traits studied such as pod length, plant height, and seeds per pod. The dendogram revealed that the improved genotypes had common ancestry with the local landraces. The seven mung beans were also genotyped using 10 microsatellite markers, eight of which showed clear and consistent amplification profiles with scorable polymorphisms in all the studied genotypes. Genetic diversity, allele number, and polymorphic information content (PIC) were determined using powermarker (version 3.25) and phylogenetic tree constructed using DARWIN version 6.0.12. Analysis of molecular variance (AMOVA) was calculated using GenALEx version 6.5. A total of 23 alleles were detected from the seven genotypes on all the chromosomes studied with an average of 2.875 across the loci. The PIC values ranged from 0.1224 (CEDG056) to 0.5918 (CEDG092) with a mean of 0.3724. Among the markers, CEDG092 was highly informative while the rest were reasonably informative except CEDG056, which was less informative. Gene diversity ranged from 0.1836 (CEDG050) to 0.5102 (CDED088) with an average of 0.3534. The Jaccards dissimilarity matrix indicated that genotypes VC614850 and N26 had the highest level of dissimilarity while VC637245 and N26 had lowest dissimilarity index. The phylogenetic tree grouped the genotypes into three clusters as revealed by population structure analysis (K = 3), with cluster III having one unique genotype (VC6137B) only. AMOVA indicated that the highest variation (99%) was between individual genotype. In addition, marker traits association analysis revealed 18 significant associations (P < 0.05). Conclusion These findings indicate sufficient variation among the studied genotypes that can be considered for germplasm breeding programs.


Sign in / Sign up

Export Citation Format

Share Document