scholarly journals Genetic Diversity and Population Genetic Structure of Ancient Platycladus orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River by Chloroplast Microsatellite Markers

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 592
Author(s):  
Bei Cui ◽  
Ping Deng ◽  
Sheng Zhang ◽  
Zhong Zhao

Ancient trees are famous for their life spans of hundreds or even thousands of years. These trees are rare, a testament to history and are important for scientific research. Platycladus orientalis, with the longest life span and a beautiful trunk, has become the most widely planted tree species and is believed to be sacred in China. Extensive declines in habitat area and quality pose the greatest threats to the loss of genetic diversity of ancient P. orientalis trees in the middle reaches of the Yellow River. Strengthening the protection of P. orientalis genetic resources is of great significance for the long-term development of reasonable conservation and breeding strategies. To better understand the genetic diversity and population structure of P. orientalis, we successfully analyzed four polymorphic chloroplast simple sequence repeat (cpSSR) loci and applied them to diversity and population structure analyses of 202 individuals from 13 populations in the middle reaches of the Yellow River. Based on the cpSSR data, 16 alleles were detected across 202 individuals, and a moderate level of genetic diversity was inferred from the genetic diversity parameters (H = 0.367 and AR = 1.964). The mean pairwise genetic differentiation coefficient (Fst) between populations was 0.153, indicating relatively high genetic population differentiations. Analysis of molecular variance (AMOVA) showed that only 8% of the variation occurred among populations. Structure analysis divided the 13 P. orientalis populations into two groups with no significant geographic population structure, which was consistent with the unweighted pair group method with arithmetic mean (UPGMA) and Mantel test results. These results may indicate that transplanting and cultivation by ancient human activities are the main factors responsible for the revealed pattern of genetic differentiation of ancient P. orientalis populations. Our research is of great significance for the future establishment of protection schemes and scientific breeding of P. orientalis.

2021 ◽  
Author(s):  
Kun Pan ◽  
Jie Hou ◽  
Wenqin Su ◽  
Bo Yi ◽  
Bingmiao Gao

Abstract In this study, we analyzed the genetic diversity and population structure of 90 A. oxyphylla accessions from Hainan island using amplified fragment length polymorphism (AFLP) markers. These 90 accessions were composed of 15 populations from different geographic locations and divided into 4 clusters (A, B, C, and D) using the Unweighted pair group method based on arithmetic average (UPGMA). The genetic similarity between individuals ranged from 0.47 to 1.00 (average of 0.74), and most accessions from the same geographic population were grouped together. Principal coordinate analysis (PCA) showed a clear distinction among three clusters (A, B and C). Based on the loci information, the population structure analysis results by STRUCTURE and TESS were consistent with the clustering of PCA. Nine AFLP primer combinations generated 1537 polymorphic bands displaying rich polymorphism, thus indicating high genetic diversity among these 15 populations with an average Nei’s gene diversity of 0.1328 ± 0.160. In conclusion, AFLP markers efficiently analyzed the genetic diversity in A. oxyphylla, demonstrating highly significant genetic variation within and among populations. However, intrapopulation genetic variance was much higher than interpopulation variability, suggesting that efforts should be made for in situ germplasm conservation and resistant varieties cultivation.


Author(s):  
Gary R. Carvalho ◽  
Stuart B. Piertney

Marked genetic differentiation in the intertidal isopod, Jaera albifrons (Crustacea: Isopoda) has been shown to occur on a scale of just a few metres on British shores. Allozyme electrophoresis at 21 enzyme-coding loci has been employed to examine genetic structure in other UK members of the complex (Jaera forsmani, J. ischiosetosa, J. praehirsuta), and explore the relationship between genetic diversity and perceived niche-width. Comparisons were made with the nonsibling species J. nordmanni. Three subpopulations of each species taken from each of two shores on Anglesey, UK (subpopulations N=30) were assayed for electrophoretic variability. Data from 11 polymorphic loci (P0·95) demonstrated marked genetic differentiation in all populations of J. albifrons and J. praehirsuta, and on one shore for each of J. ischiosetosa and J. nordmanni, with J. praehirsuta (GST=0·207) and J. albifrons (GST=0·121) showing the highest genetic differentiation. In contrast, J. forsmani exhibited population homogeneity on both shores studied. Genetic diversity ranged markedly across species (H0=0·165—0·040), with the two most widely distributed species, J. albifrons (H0=0·135) and J. ischiosetosa (Ho=0·165) exhibiting the highest genetic variability, providing support for the niche-width variation hypothesis. Data indicate that although habitat fragmentation and direct development is associated with microgeographic differentiation in Jaera spp., localized factors such as habitat continuity and exposure to water movements determines the magnitude of such effects.


2020 ◽  
Author(s):  
Ryo Orita ◽  
Yukio Nagano ◽  
Yoshio Kawamura ◽  
Kei Kimura ◽  
Genta Kobayashi

AbstractThe razor clam Sinonovacula constricta is a commercially important bivalve in Japan. The current distribution of this species in Japan is limited to Ariake Bay, where the fishery stock is declining. It is necessary to understand the genetic population structure of this species in order to restore the fishery stock while preserving the genetic diversity of the clam. Here, we report for the first time the genetic population structure of S. constricta in Ariake Bay, Japan. Paired-end restriction site-associated DNA sequencing (RAD-Seq) analyzed samples of S. constricta collected from seven mudflats located along Ariake Bay. Two different genetic populations exist in Ariake Bay, one inhabiting wild habitats and the other inhabiting the transplanted area of artificial seedlings. Our results suggest that genetic differentiation occurred between these two populations (Fst value = 0.052), and a high level of genetic differentiation is maintained between the two groups. In the future, the two genetically distinct populations need to be available as fishery resources, while taking into account their conservation and hybridization status.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Orita ◽  
Yukio Nagano ◽  
Yoshio Kawamura ◽  
Kei Kimura ◽  
Genta Kobayashi

AbstractThe razor clam Sinonovacula constricta is a commercially important bivalve in Japan. The current distribution of this species in Japan is limited to Ariake Bay, where the fishery stock is declining. It is necessary to understand the genetic population structure of this species in order to restore the fishery stock while preserving the genetic diversity of the clam. Here, we report for the first time the genetic population structure of S. constricta in Ariake Bay, Japan. Paired-end restriction site-associated DNA sequencing (RAD-Seq) analyzed samples of S. constricta collected from seven mudflats located along Ariake Bay. Two different genetic populations exist in Ariake Bay, one inhabiting wild habitats and the other inhabiting the transplanted area of artificial seedlings. Our results suggest that genetic differentiation occurred between these two populations (Fst value = 0.052), and a high level of genetic differentiation is maintained between the two groups. In the future, monitoring the interbreeding status of the two genetically distinct populations and the genetic differentiation within each population is important for conserving the genetic diversity of S. constricta in Japan.


2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


2021 ◽  
Vol 12 ◽  
Author(s):  
Tian-Qi Shi ◽  
Hai-Mo Shen ◽  
Shen-Bo Chen ◽  
Kokouvi Kassegne ◽  
Yan-Bing Cui ◽  
...  

Malaria incidence has declined dramatically over the past decade and China was certified malaria-free in 2021. However, the presence of malaria in border areas and the importation of cases of malaria parasites are major challenges for the consolidation of the achievements made by China. Plasmodium vivax Duffy binding protein (PvDBP) performs a significant role in erythrocyte invasion, and is considered a promising P. vivax vaccine. However, the highly polymorphic region of PvDBP (PvDBP-II) impedes the development of blood-stage vaccine against P. vivax. In this study, we investigated the genetic diversity and natural selection of PvDBP-II among 124 P. vivax isolates collected from the China-Myanmar border (CMB) in Yunnan Province, China, during 2009–2011. To compare genetic diversity, natural selection, and population structure with CMB isolates, 85 pvdbp-II sequences of eastern Myanmar isolates were obtained from GenBank. In addition, global sequences of pvdbp-II were retrieved from GenBank to establish genetic differentiation relationships and networks with the CMB isolates. In total, 22 single nucleotide polymorphisms reflected in 20 non-synonymous and two synonymous mutations were identified. The overall nucleotide diversity of PvDBP-II from the 124 CMB isolates was 0.0059 with 21 haplotypes identified (Hd = 0.91). The high ratio of non-synonymous to synonymous mutations suggests that PvDBP-II had evolved under positive selection. Population structure analysis of the CMB and eastern Myanmar isolates were optimally grouped into five sub-populations (K = 5). Polymorphisms of PvDBP-II display that CMB isolates were genetically diverse. Mutation, recombination, and positive selection promote polymorphism of PvDBP-II of P. vivax population. Although low-level genetic differentiation in eastern Myanmar was identified along with the more effective malaria control measures, the complexity of population structure in malaria parasites has maintained. In conclusion, findings from this study advance knowledge of the understanding of the dynamic of P. vivax population, which will contribute to guiding the rational design of a PvDBP-II based vaccine.


2020 ◽  
Author(s):  
Brenda G. Díaz ◽  
Maria I. Zucchi ◽  
Alessandro. Alves-Pereira ◽  
Caléo P. de Almeida ◽  
Aline C. L. Moraes ◽  
...  

AbstractAcrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of seven species of Acrocomia including 117 samples of A. aculeata covering a wide geographical area of occurrence, using single nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS). The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


ZooKeys ◽  
2021 ◽  
Vol 1055 ◽  
pp. 135-148
Author(s):  
Dongqi Liu ◽  
Feng Lan ◽  
Sicai Xie ◽  
Yi Diao ◽  
Yi Zheng ◽  
...  

To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 populations collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019 (P > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant (P > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change. A correlation analysis showed that the genetic diversity of the seven populations collected in 2019 was significantly negatively correlated with geographical height (r = −0.808, P = 0.028), indicating that the populations at high elevations were more vulnerable than those at low elevations. In order to prevent the further decrease of genetic diversity and population resources, some conservation and restoration suggestions, such as fish passage and artificial breeding, are put forward.


Sign in / Sign up

Export Citation Format

Share Document