scholarly journals HIF-1α overexpression in adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia-induced dysfunction and inflammation in HUVECs

Author(s):  
Xingxing Chen ◽  
Yonghong Sun ◽  
Xiaoyan Lei ◽  
Yunshan Cao ◽  
Mingdong Gao ◽  
...  

Abstract Background Increasing evidence suggests that ADSCs execute their paracrine function via the secretion of exosomes, especially under hypoxic conditions. However, the mechanisms by which ADSCs-derived exosomes (ADSC-exos) enhance angiogenesis under hypoxia remain unclear. Methods Exosomes were isolated from HIF-1α-modified ADSCs culture supernatants. To investigate the effects HIF-1α-ADSC-exos on HUVECs, cell growth, apoptosis, and tube formation assay were performed with or without HIF-1α-ADSC-exos. Moreover, to determine the function of HIF-1α-ADSC-exos, the therapeutic effects of ADSC-exos and HIF-1α-ADSC-exos were examined in PAH rats. Results Exosomes released by HIF-1α-modified ADSCs rescued the impaired angiogenic ability, migratory function, and inflammatory factors of hypoxia-injured HUVECs, with increased SDF-1α, Rac1, Rac2, VEGF and IL-10 expression. Furthermore, exos-HIF-1α activated SIRT3 to enhance angiogenesis in HUVECs and induced IL-10 expression to inhibit inflammatory response. Block SIRT3 or SDF-1α abolished the angiogenic effect in HUVECs. Conclusion Our findings indicated that the SIRT3 contributed a crucial role in HIF-1α-ADSC-exos in tissue repair under hypoxia.

Nanoscale ◽  
2020 ◽  
Author(s):  
Naishun Liao ◽  
Da Zhang ◽  
Ming Wu ◽  
Huang-Hao Yang ◽  
Xiaolong Liu ◽  
...  

Adipose tissue derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to low hepatic engraftment efficiency of...


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gee-Hye Kim ◽  
Yun Kyung Bae ◽  
Ji Hye Kwon ◽  
Miyeon Kim ◽  
Soo Jin Choi ◽  
...  

Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro ( p < 0.01 ), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.


RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85756-85766 ◽  
Author(s):  
E. Jäger ◽  
R. K. Donato ◽  
M. Perchacz ◽  
A. Jäger ◽  
F. Surman ◽  
...  

Poly(alkene succinates) are promising materials for specialized medical devices and tissue engineering, presenting intrinsic properties, such as; fungal biofilm inhibition, biocompatibility and stem cells controlled growth promotion.


2008 ◽  
Vol 207 (3) ◽  
pp. S63
Author(s):  
Marc A. Soares ◽  
John G. Fernandez ◽  
Björn H. Schönmeyr ◽  
Nicholas W. Clavin ◽  
Babak J. Mehrara

2018 ◽  
Vol 10 (36) ◽  
pp. 30081-30091 ◽  
Author(s):  
Kaiyue Zhang ◽  
Xiangnan Zhao ◽  
Xiaoniao Chen ◽  
Yongzhen Wei ◽  
Wei Du ◽  
...  

2018 ◽  
Vol 34 ◽  
pp. 59-66 ◽  
Author(s):  
Maykel González-Torres ◽  
Roberto Sánchez-Sánchez ◽  
Silvia G. Solís-Rosales ◽  
Witold Brostow ◽  
Eric Reyes-Cervantes ◽  
...  

2019 ◽  
Author(s):  
Zhou Zhilai ◽  
Tian Xiaobo ◽  
Mo Biling ◽  
Xu Huali ◽  
Yao Shun ◽  
...  

Abstract Background The therapeutic effects of adipose-derived mesenchymal stem cell (ADSC) transplantation have been demonstrated in several models of central nervous system (CNS) injury and are thought to involve the modulation of the inflammatory response. However, the exact underlying molecular mechanism is poorly understood. Activation of the Jagged1/Notch signaling pathway is thought to involve inflammatory and gliotic events in the CNS. Here, we elucidated the effect of ADSC transplantation on the inflammatory reaction after spinal cord injury (SCI) and the potential mechanism mediated by Jagged1/Notch signaling pathway suppression.Methods Using a mouse model of compression SCI, ADSCs and Jagged1 small interfering RNA (siRNA) were injected into the spinal cord. Locomotor function, spinal cord tissue morphology and the levels of various proteins and transcripts were compared between groups.Results ADSC treatment resulted in significant downregulation of proinflammatory mediator expression and reduced ionized calcium binding adapter molecule 1 (Iba1) and ED1 staining in the injured spinal cord, promoting the survival of neurons. These changes were accompanied by improved functional recovery. The augmentation of the Jagged1/Notch signaling pathway after SCI was suppressed by ADSC transplantation. The inhibition of the Jagged1/Notch signaling pathway by Jagged1 siRNA resulted in a decrease in SCI-induced proinflammatory cytokines as well as the activation of microglia. Furthermore, Jagged1 knockdown suppressed the phosphorylation of JAK/STAT3 following SCI.Conclusion The results of this study demonstrated that the therapeutic effects of ADSCs in SCI mice were partly due to Jagged1/notch signaling pathway inhibition and a subsequent reduction in JAK/STAT3 phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document