scholarly journals Development of tBu-phenyl acetamide appended thiacalix[4]arene as “Turn-ON” Fluorescent Probe For Selective Recognition of Hg(II) Ions

Author(s):  
Ashukumar Verma ◽  
Krunal Modi ◽  
Shuvankar Dey ◽  
Anita Kongor ◽  
Manthan Panchal ◽  
...  

Abstract Herein, a novel N-(4-(tert-butyl)-phenyl)-2-chloroacetamide functionalized thiacalix[4]arene architecture, viz TCAN2PA has been synthesized and the sensing behaviour towards metal ions was explored. The probe, TCAN2PA displayed a “Turn-ON” fluorescence response towards Hg(II) ions in acetonitrile over a series of competing common metal ions. A bathochromic shift in absorption band along with a significant “Turn-ON” fluorescence behaviour of TCAN2PA was observed upon interaction with Hg(II) ions. The lower rim modification of thiacalixarene with N-(4-(tert-butyl)-phenyl)-2-chloroacetamide actively contributes toward the fluorescence property due to the presence of strong electron-donating aryl amido substituent. Fluorescence titration experiments were conducted to find out the limit of detection and to understand binding stoichiometry as well. The electron transfer interactions between the electron-rich TCAN2PA host with Hg(II) ions have been postulated which is also supported by computational modelling insights.

2018 ◽  
Vol 17 (9) ◽  
pp. 1247-1255 ◽  
Author(s):  
Hyo Jung Jang ◽  
Ji Hye Kang ◽  
Dongju Yun ◽  
Cheal Kim

A versatile chemosensor was developed for highly distinguishable and selective recognition of group IIIA metal ions (Al3+, Ga3+ and In3+).


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 917
Author(s):  
Min-Sung Ko ◽  
P. Sankara Rao ◽  
Dong-Gyu Cho

π-Extended di-2-picolylamine (DPA)-substituted 8-hydroxyquinoline (8-HQ) tolans (2) were synthesized for testing electronic and regio-effects. The electron-poor CN-tolan (2b) showed clear selectivity for Cd2+ (>>Zn2+) over other metal ions via turn-on fluorescence, while the electron-rich MeO-tolan (2a) displayed no clear metal selectivity. Furthermore, considering that there was no significant energy difference between the Cd2+ complexes of 1 and 2b, the intended regio-effect (7- vs. 5-substituted effect) did not induce steric hindrance. Thus, the regio-effect is mainly electronic. Considering the above, 2a and 2b constitute a complete showcase in which electronic and regio-effects modulate the metal selectivity. The fluorescence titration of 2b (10 mM) with Cd2+ showed that the limit of detection (LOD) of the Cd2+-selective 2b was 158 nM in PBS (phosphate-buffered saline) (10 mM, pH 7.2) containing 50% MeOH.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 107
Author(s):  
Kequan Xu ◽  
Clara Pérez-Ràfols ◽  
Amine Marchoud ◽  
María Cuartero ◽  
Gastón A. Crespo

The widely spread use of the hanging mercury drop electrode (HMDE) for multi-ion analysis is primarily ascribed to the following reasons: (i) excellent reproducibility owing to the easy renewal of the electrode surface avoiding any hysteresis effect (i.e., a new identical drop is generated for each measurement to be accomplished); (ii) a wide cathodic potential window originating from the passive hydrogen evolution and solvent electrolysis; (iii) the ability to form amalgams with many redox-active metal ions; and (iv) the achievement of (sub)nanomolar limits of detection. On the other hand, the main controversy of the HMDE usage is the high toxicity level of mercury, which has motivated the scientific community to question whether the HMDE deserves to continue being used despite its unique capability for multi-metal detection. In this work, the simultaneous determination of Zn2+, Cd2+, Pb2+, and Cu2+ using the HMDE is investigated as a model system to evaluate the main features of the technique. The analytical benefits of the HMDE in terms of linear range of response, reproducibility, limit of detection, proximity to ideal redox behavior of metal ions and analysis time are herein demonstrated and compared to other electrodes proposed in the literature as less-toxic alternatives to the HMDE. The results have revealed that the HMDE is largely superior to other reported methods in several aspects and, moreover, it displays excellent accuracy when simultaneously analyzing Zn2+, Cd2+, Pb2+, and Cu2+ in such a complex matrix as digested soils. Yet, more efforts are required towards the definitive replacement of the HMDE in the electroanalysis field, despite the elegant approaches already reported in the literature.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14700-14709
Author(s):  
Rintumoni Paw ◽  
Moushumi Hazarika ◽  
Purna K. Boruah ◽  
Amlan Jyoti Kalita ◽  
Ankur K. Guha ◽  
...  

Synthesis of Ag nanoparticles using Allin based garlic extract for highly sensitive and selective detection of metal ions Hg2+ and Sn2+ in water. The limit of detection (LoD) for Hg2+ and Sn2+ ions were found as 15.7 nM and 11.25 nM respectively.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65731-65738 ◽  
Author(s):  
Divya Singhal ◽  
Neha Gupta ◽  
Ashok Kumar Singh

2-((3-Methylthiophen-2-yl)methyleneamino)benzenethiol (Probe 1) is selective for Hg2+. The binding affinity of Hg2+ with Probe 1 was confirmed by DFT and electrochemical behaviour. The limit of detection was 20 μM with 2 : 1 stoichiometry of 1 + Hg2+ complex.


2015 ◽  
Vol 44 (9) ◽  
pp. 4123-4132 ◽  
Author(s):  
Chirantan Kar ◽  
Soham Samanta ◽  
Sudeep Goswami ◽  
Aiyagari Ramesh ◽  
Gopal Das

Selective recognition of Al3+and Cd2+by UV-Vis and fluorescence based techniques using a cinnamaldehyde functionalized conjugated ligand, and its applications in paper strip and live cell imaging.


2021 ◽  
Author(s):  
Gyeongjin Kim ◽  
Donghwan Choi ◽  
Cheal Kim

Abstract A new benzothiazole-based chemosensor BTN (1-((Z)-(((E)-3-methylbenzo[d]thiazol-2(3H)-ylidene)hydrazono)methyl)naphthalen-2-ol) was synthesized for the detection of Cu2+. BTN could detect Cu2+ with “off-on” fluorescent response from colorless to yellow irrespective of presence of other cations. Limit of detection for Cu2+ was determined to be 3.3 µM. Binding ratio of BTN and Cu2+ turned out to be a 1:1 with the analysis of Job plot and ESI-MS. Sensing feature of Cu2+ by BTN was explained with theoretical calculations, which might be owing to internal charge transfer and chelation-enhanced fluorescence processes.


Sign in / Sign up

Export Citation Format

Share Document