Plant Stem Tissue Modeling and Parameter Identification using Meta-heuristic Optimization Algorithms

Author(s):  
Mohamed S. Ghoneim ◽  
Samar I. Ismail ◽  
Lobna A. Said ◽  
Ahmed M. Eltawil ◽  
Ahmed G. Radwan ◽  
...  

Abstract Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared among three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, FO Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem through a non-invasive method. Experiments are conducted on two samples of three different medical plant species under the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the frequency range from 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to find the most suitable circuit model that models the plant stem. The proposed models give the best results in all inter-electrode spacing distances. Four different meta-heuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems.

2019 ◽  
Vol 95 (3) ◽  
pp. 2491-2542 ◽  
Author(s):  
D. A. Yousri ◽  
Amr M. AbdelAty ◽  
Lobna A. Said ◽  
A. S. Elwakil ◽  
Brent Maundy ◽  
...  

2021 ◽  
Vol 35 (4) ◽  
pp. 1149-1166
Author(s):  
Hossien Riahi-Madvar ◽  
Majid Dehghani ◽  
Rasoul Memarzadeh ◽  
Bahram Gharabaghi

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3697
Author(s):  
Valeria Stagno ◽  
Chiara Genova ◽  
Nicole Zoratto ◽  
Gabriele Favero ◽  
Silvia Capuani

In this work, we investigated the potential of PVA-borax hydrogel for cleaning limestones and the dependence of the cleaning on the porosity of the rock and on the action time of the hydrogel treatment. Towards this goal, we used a nuclear magnetic resonance (NMR) spectrometer, developed for non-invasive and non-destructive applications on cultural heritage. T2-NMR parameters were quantified on different samples of Lecce stone and Travertine cut perpendicular (Pe) and parallel (Pa) to the bedding planes under different experimental conditions: untreated samples, treated with Paraloid B72 and cleaned with PVA-PEO-borax hydrogel applied for 4 min and 2 h. The T2 results suggest that the effectiveness of the cleaning strongly depended on the porosity of the stones. In Lecce stone, the hydrogel seemed to eliminate both the paramagnetic impurities (in equal measure with 4 min and 2 h treatment) and Paraloid B72. In Travertine Pe, characterized by a smaller pore size compared to Lecce stone, no significant effects were found regarding both the cleaning and the treatment with Paraloid B72. In Travertine Pa, characterized by a larger pore size than the other two samples, the hydrogel seemed to clean the paramagnetic agents (it worked better if applied for a longer time) but it did not appear to have any effect on Paraloid B72 removal.


Author(s):  
Patrick Magee ◽  
Mark Tooley

Blood pressure measurement occurs either non-invasively or invasively, and usually refers to systemic arterial pressure measurement, but can also refer to systemic venous or pulmonary arterial pressure measurement. In 1733 the Reverend Stephen Hales was the first person to measure the blood pressure in vivo in unanaesthetised horses by direct cannulation of the carotid and femoral arteries. In doing so he observed the pulsatile nature of flow in the circulation. In 1828 Poiseuille developed the mercury manometer, and used it to measure blood pressure in a dog. The mercury manometer has, of course, become the standard technique against which other techniques are compared. The earliest numerical information on blood pressure measurement came from direct rather than indirect measurement in 1856 by Faivre, using Poiseuille’s device. However, in the last part of the nineteenth century, non-invasive measurement techniques were developed. In 1903, Codman and Cushing introduced the concept of routine intraoperative blood pressure measurement, which at the time was a revolutionary concept. Nowadays it is a fundamental part of minimal monitoring criteria. There are several techniques of non-invasive BP (NIBP) measurement, all of which function by occluding the pulse in a limb with a proximal cuff, then detecting its onset again distally, on lowering the cuff pressure. Detection methods include palpation, auscultation, plethysmography, oscillotonometry and oscillometry. Accuracy of all non-invasive techniques depends on cuff size in relation to the limb concerned, and over which artery the cuff is placed. Such techniques of NIBP measurement are necessarily intermittent. Much discussion has taken place on the accuracy of these devices, and the accuracy of diastolic pressure measurements needs improving, and there are ideas proposed for new non-invasive devices [Tooley and Magee 2009]. In the absence of a stethoscope, this technique is simple and reliable. After inflating the cuff on the upper arm to a pressure of above that of systolic, the cuff is then deflated while palpating the brachial artery and the systolic pressure is measured with a mercury column at first detection of the pulse. A study by van Bergen [1954] showed that BP can be underestimated by this method by up to 25% at 120 mmHg.


2015 ◽  
pp. 1292-1341
Author(s):  
N.I. Voropai ◽  
A. Z. Gamm ◽  
A. M. Glazunova ◽  
P. V. Etingov ◽  
I. N. Kolosok ◽  
...  

Optimization of solutions on expansion of electric power systems (EPS) and their control plays a crucial part in ensuring efficiency of the power industry, reliability of electric power supply to consumers and power quality. Until recently, this goal was accomplished by applying classical and modern methods of linear and nonlinear programming. In some complicated cases, however, these methods turn out to be rather inefficient. Meta-heuristic optimization algorithms often make it possible to successfully cope with arising difficulties. State estimation (SE) is used to calculate current operating conditions of EPS using the SCADA measurements of state variables (voltages, currents etc.). To solve the SE problem, the Energy Systems Institute of Siberian Branch of Russian Academy of Sciences (ESI of SB RAS) has devised a method based on test equations (TE), i.e. on the steady state equations that contain only measured parameters. Here, a technique for EPS SE using genetic algorithms (GA) is suggested. SE is the main tool for EPS monitoring. The quality of SE results determines largely the EPS control efficiency. An algorithm for exclusion of wrong SE calculations is described. The algorithm using artificial neural networks (ANN) is based on the analysis of results of the calculation performed solving the SE problem with different combinations of constants. The proposed procedure is checked on real data.


Sign in / Sign up

Export Citation Format

Share Document