scholarly journals Molecular Divergence in Flea Ctenocephalides Canis From West and Northwest of Iran

2020 ◽  
Author(s):  
Mousa Tavassoli ◽  
Shahin Seidy ◽  
Farnaz Malekifard

Abstract BackgroundFleas of the family Pulicidae are the most common ectoparasites infesting domestic livestock worldwide. The main aim of the present study was to demonstrate the degree of molecular divergence between Ctenocephalides canis fleas in the Western and Northwestern of Iran, based on nuclear and mitochondrial genes, including ITS1and ITS 2 and cytochrome c-oxidase 1 (cox1) mtDNA. MethodsA total of 918 C. canis fleas was collected. The obtained morphometric data and DNA sequencing results did not show significant differences between C. canis specimens from the different regions or hosts. However, there was a significant degree of molecular divergence among the ten populations based on nuclear markers.ResultsThe degree of molecular divergence between different isolates of C. canis based on ITS1and ITS 2 genes was 0.15% and 3.36%, respectively. But analysis of the sequencing results shows that there was no molecular divergence between the ten populations based on the Cox1 marker.ConclusionsStudy of internal transcribed spacer ITS1 and ITS2 of rDNA and the partial cox1 mtDNA gene showed that these fragments are useful tools for interspecific divergence rates, species-level differentiation and confirm the diagnosis of species C. canis.

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Zoltán László ◽  
Péter Pankovics ◽  
Gábor Reuter ◽  
Attila Cságola ◽  
Ádám Bálint ◽  
...  

Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.


1979 ◽  
Vol 57 (5) ◽  
pp. 979-982 ◽  
Author(s):  
Emmanuel C. Igbokwe

Species-specific patterns of larval protein electrophoregrams obtained among three species of Aedes mosquitoes were analyzed numerically. A behavioral profile was derived and illustrated for the larval protein complex of each species. Patterns of interspecific divergence in molecular behavior not detectable otherwise from the electrophoregrams were evident in the behavioral profiles of the proteins. The degree of electrophoretic correspondence obtained from the number of shared fractions among the species differs from that derived from the collective behavior of proteins. The numerical and graphic approach to the interpretation of protein electrophoregrams offers another parameter for gauging molecular divergence among related species of insects.


2018 ◽  
Vol 32 (5) ◽  
pp. 1102 ◽  
Author(s):  
M. Bo ◽  
M. Barucca ◽  
M. A. Biscotti ◽  
M. R. Brugler ◽  
A. Canapa ◽  
...  

The Mediterranean black coral fauna includes type species of four antipatharian genera belonging to four different families, therefore phylogenetic studies hold great potential for enhancing systematics within the order. The analysis of six Mediterranean antipatharian species by means of nuclear sequence data of internal transcribed spacer (ITS1 and ITS2) rDNA confirms the separation into different families, as was previously noted on a morphological basis, with a clear distinction of the family Leiopathidae, whose position is supported by a unique number of mesenteries and lack of spines on thicker ramifications. The position of a newly recorded black coral species for the Mediterranean basin belonging to the genus Phanopathes is discussed. Antipathes dichotoma, the type species of the genus Antipathes, on which the order Antipatharia was based, does not group with other members of the family Antipathidae. Supporting a recent finding based on mitochondrial markers, this suggests a critical need for revision of the families that will be impacted by reassignment of this nomenclaturally important taxon.


1983 ◽  
Vol 3 (9) ◽  
pp. 1615-1624
Author(s):  
H P Zassenhaus ◽  
F Farrelly ◽  
M E Hudspeth ◽  
L I Grossman ◽  
R A Butow

A family of mitochondrial RNAs hybridizes specifically to the var1 region on Saccharomyces cerevisiae mitochondrial DNA (Farrelly et al., J. Biol. Chem. 257:6581-6587, 1982). We constructed a fine-structure transcription map of this region by hybridizing DNA probes containing different portions of the var1 region and some flanking sequences to mitochondrial RNAs isolated from var1-containing petites. We also report the nucleotide sequence of more than 1.2 kilobases of DNA flanking the var1 gene. Our primary findings are: (i) The family of RNAs we detect with homology to var1 DNA is colinear with the var1 gene. Their direction of transcription is olil to cap, as it is for most other mitochondrial genes. (ii) Extensive hybridization anomalies are present, most likely due to the high A-T (A-U) content of the hybridizing species and to the asymmetric distribution of their G-C residues. An important conclusion is that failure to detect transcripts from A-T-rich regions of the yeast mitochondrial genome by standard blot transfer hybridizations cannot be interpreted to mean that such sequences, which are commonly supposed to be spacer DNA, are noncoding or lack direct function in the expression of mitochondrial genes.


Zootaxa ◽  
2003 ◽  
Vol 355 (1) ◽  
pp. 1 ◽  
Author(s):  
WILLIAM P. LEONARD ◽  
LYLE CHICHESTER ◽  
JIM BAUGH ◽  
THOMAS WILKE

A new genus and species of arionid slug, Kootenaia burkei n. gen. et n. sp., are formally described from northern Idaho, United States. This taxonomic decision is based on comparative anatomical and molecular data involving representatives of a total of ten species and three additional genera (Hemphillia, Prophysaon, and Zacoleus) of the family Arionidae. The anatomical analyses show that the new genus is characterized by a major autapomorphy, the complete absence of an epiphallus, which is found in all other arionids. The molecular analyses using two mitochondrial genes and the anatomical data produce congruent topologies. Overall, there is a high degree of concordance between the anatomical and molecular datasets.


Zootaxa ◽  
2019 ◽  
Vol 4551 (5) ◽  
pp. 530
Author(s):  
IGOR SUKHIKH ◽  
ALEXANDER BLINOV ◽  
ALEXANDER BUGROV

The genus Haplotropis Sauss. is a relatively small genus in the family Pamphagidae (Orthoptera: Caelifera). Historically, there has been a discussion on the placement of this genus, whether it belongs in the subfamily Pamphaginae or in the subfamily Thrinchinae. Here we present a phylogenetic analysis of nucleotide sequences of two mitochondrial genes (COI, COII) and the ITS2 rRNA nuclear region of multiple species of the family Pamphagidae and related taxa. Our results clearly support the placement of the genus Haplotropis, and other species of the tribe Haplotropidini, in the subfamily Thrinchinae. 


Zootaxa ◽  
2007 ◽  
Vol 1400 (1) ◽  
pp. 27 ◽  
Author(s):  
PHILP ALDERSLADE ◽  
CATHERINE S. McFADDEN

Clavularia amboinensis Burchardt, a species described as possessing simple, pinnule-less tentacles (a fact refuted by later authors) is confirmed to be as described and is transferred as a new combination to Acrossota Bourne — a genus dismissed until now by a number of authors. The species is compared to recently collected material with live photographs. A second new genus and species, Knopia octocontacanalis, is also described. This taxon resembles Acrossota in general form, but has tentacles where the pinnules appear as though they are fused side to side along the tentacles’ lateral margins. Preliminary phylogenetic analyses of two mitochondrial genes support placement of Knopia in Clavulariidae and retention of genus Acrossota in Bourne’s unrecognised family Acrossotidae.


Zootaxa ◽  
2004 ◽  
Vol 712 (1) ◽  
pp. 1 ◽  
Author(s):  
GUILHERME SCHNELL E. SCHUEHLI ◽  
CLAUDIO JOSÉ BARROS DE CARVALHO ◽  
BRIAN M. WIEGMANN

The muscid genus Ophyra has long been the subject of debate over its placement within the family. However, a phylogenetic study has never been conducted that would clarify its systematic position. In the present paper, phylogenetic relationships are examined between Ophyra albuquerquei and related muscid genera. The mitochondrial genes Cytochrome Oxidase I and II and tRNA-Leu were used combined with the nuclear genes CAD and Elongation Factor 1 to compose a matrix with 2989 characters (716 parsimonyinformative). These characters were analyzed under parsimony resulting in a single most parsimonious tree. Contrary to some recent classifications, our molecular data suggest the placement of Ophyra albuquerquei within the Muscinae in a separate position from the azeliine genus Hydrotaea.


Parasitology ◽  
2004 ◽  
Vol 128 (5) ◽  
pp. 569-575 ◽  
Author(s):  
A. OBWALLER ◽  
R. SCHNEIDER ◽  
J. WALOCHNIK ◽  
B. GOLLACKNER ◽  
A. DEUTZ ◽  
...  

Genetic analyses ofEchinococcus granulosusisolates from different intermediate host species have demonstrated substantial levels of variation for some genotype (strain) clusters. To determine the range of genetic variability within and between genotypes we amplified and cloned partialcox1andnadh1genes from 16 isolates ofE. granulosusfrom 4 continents. Furthermore, we sequenced different clones from a PCR product to analyse the intra-individual genetic variance. The findings showed a moderate degree of variance within single isolates and a significant degree of variance between the cluster of genotypes G1–G3 (sheep, Tasmanian sheep and buffalo strain), genotypes G4 (horse strain) and G5 (cattle strain) and the cluster of the genotypes G6 (camel strain) and G7 (pig strain). The variance of up to 2·2% within genotypes was relatively low compared with that of 4·3–15·7% among genotypes. The present results indicate that a re-examination of the classification of 5 genotypes ofEchinococcusis warranted. Hence, our data highly support a re-evaluation of the taxonomy of the clades G1–G3, G4, G5, G6/7 and G8 (cervid strain) within the genusEchinococcus.


1983 ◽  
Vol 3 (9) ◽  
pp. 1615-1624 ◽  
Author(s):  
H P Zassenhaus ◽  
F Farrelly ◽  
M E Hudspeth ◽  
L I Grossman ◽  
R A Butow

A family of mitochondrial RNAs hybridizes specifically to the var1 region on Saccharomyces cerevisiae mitochondrial DNA (Farrelly et al., J. Biol. Chem. 257:6581-6587, 1982). We constructed a fine-structure transcription map of this region by hybridizing DNA probes containing different portions of the var1 region and some flanking sequences to mitochondrial RNAs isolated from var1-containing petites. We also report the nucleotide sequence of more than 1.2 kilobases of DNA flanking the var1 gene. Our primary findings are: (i) The family of RNAs we detect with homology to var1 DNA is colinear with the var1 gene. Their direction of transcription is olil to cap, as it is for most other mitochondrial genes. (ii) Extensive hybridization anomalies are present, most likely due to the high A-T (A-U) content of the hybridizing species and to the asymmetric distribution of their G-C residues. An important conclusion is that failure to detect transcripts from A-T-rich regions of the yeast mitochondrial genome by standard blot transfer hybridizations cannot be interpreted to mean that such sequences, which are commonly supposed to be spacer DNA, are noncoding or lack direct function in the expression of mitochondrial genes.


Sign in / Sign up

Export Citation Format

Share Document