scholarly journals Integrated Geochemical And Mineralogical Investigation of Soil From The Volcanic Fogo Island (Cape Verde): Implications For Ecological And Probabilistic Human Health Risks

Author(s):  
Marina M.S. Cabral Pinto ◽  
Narottam Saha ◽  
Carlos M Ordens ◽  
Denise Pitta-Groz ◽  
Gelson Carlos ◽  
...  

Abstract Volcanic regions are associated with increased environmental and human health risks due to elevated concentrations of potentially toxic elements (PTEs). Fogo Island, Cape Verde, experienced recent volcanic eruptions, which raised questions about local soils' potential to pose such risks. To better understand the local mineralogy and geochemistry, and environmental and probabilistic human health risks, we (i) investigate the distribution of selected PTEs in 140 soil samples covering different geologic units, (ii) determine major associations between minerals and geological units, (iii) calculate the potential ecological risk, and (iv) model human health risks based on Monte Carlo simulations. The results show that the soils overlaying the older pre-caldera units yield higher contents of secondary minerals (phyllosilicates and Fe-oxides), with relative enrichment of PTEs. The soils covering more recent units are enriched with primary minerals (feldspar and pyroxene) and show elevated concentrations of Pb. This study suggests that As, Pb, Cd and Hg pose ‘considerable’ to ‘very high’ ecological risks. Based on probabilistic health risk simulation, ingestion is identified as the dominant pathway of PTEs exposure. Metal(oid)s are unlikely to cause a non-carcinogenic health risk, although As may pose a cancer risk for children. This research also provides health and environmental authorities with a tool to manage such risks.

2020 ◽  
Vol 24 (8) ◽  
pp. 1409-1418
Author(s):  
B. Samuel ◽  
S. Sorsa ◽  
F. Daniel ◽  
G. Riise ◽  
G.M. Zinabu

Concentrations of heavy metals (Cr, Co, Fe, Ni, Cu, Zn, As, Se, Pb and Hg) in muscle tissues of two fish species (Clarias gariepinus and Oreochromis niloticus) in an Ethiopian rift-valley lake (Hawassa) and a neighboring stream (Boicha) were determined. Target hazard quotients (THQ), hazard index (HI) and target cancer risk (TCR) were used as indices to evaluate potential human health risks from fish consumption. Average concentrations of metals decreased in the order Zn>Fe>Se>Cu>Hg>As>Ni>Cr>Co>Pb and Zn>Fe>Se>Cu>As>Hg>Cr>Ni>Pb>Co in muscle tissues of C. gariepinus and O. niloticus, respectively. Mean concentrations of Hg (0.34+0.04 mg kg-1) in muscle tissues of C. gariepinus from Lake Hawassa, and As (0.18+0.05 mg kg-1) as well as Hg (0.46+0.03 mg kg-1) in muscle tissues of C. gariepinus from Boicha stream were above the safety limits set by WHO/FAO. Likewise, mean concentrations of As (0.31+0.03 mg kg-1) and Hg (0.19+0.05 mg kg-1) in muscle tissues of O. niloticus from Lake Hawassa and Cr (0.19+0.03 mg kg-1), As (0.33 +0.04 mg kg-1), and Hg (0.34+0.09 mg kg-1) in O. niloticus from Boicha stream were also above safety limits. From the results of human health risk assessments it was concluded that Cr, Cu, Hg and As pose potential health risks due to consumption of the two fish species from both water bodies. Moreover, effects of all heavy metals put together may affect human health as indicated by the high HI. Effluents from industries are assumed to be the main sources of the heavy metals. Therefore, regular monitoring of the water bodies and policy interventions with respect to waste disposal are recommended to protect the health of the ecosystem and the public. Keywords: Fish consumption, health risk, heavy metals, Lake Hawassa


2021 ◽  
Vol 112 (S1) ◽  
pp. 133-153
Author(s):  
Harold Schwartz ◽  
Lesya Marushka ◽  
Hing Man Chan ◽  
Malek Batal ◽  
Tonio Sadik ◽  
...  

Abstract Objectives Pharmaceuticals are emerging contaminants in the environment. Little has been published about the presence of pharmaceuticals in waterbodies nearby or on reserve land of First Nations in Canada. The objectives of this study were to (1) quantify the level of pharmaceuticals in First Nations’ surface waters, (2) calculate the human health risks of the mixtures found, and (3) measure the exposure to pharmaceuticals in First Nations’ drinking water where source water was highly contaminated. Methods This participatory study measured the levels of 43 pharmaceuticals from surface water samples taken at three water sampling sites chosen by the 95 participating First Nations. The sites were in proximity to recreational areas, fishing areas, drinking water sources, and/or wastewater outflows. When elevated levels of pharmaceutical mixtures were found in samples, drinking water samples were obtained and analyzed for potential pharmaceuticals. Human health risks were calculated by an established protocol. Results In total, 432 samples were collected at 302 water sampling sites (285 surface water, 11 drinking water, and 6 wastewater sites). Quantifiable levels of 35 pharmaceuticals were found in 79 of the 95 (83%) participating First Nations at 193 of the 285 surface water sites (68%). Overall, the levels found were comparable to or lower than those found in other studies in Canada and worldwide. Conclusion In almost all participating First Nations, there is no human health risk from consuming surface water for drinking. However, surface water in the vicinity of major urban centres should not be used as secondary untreated water sources due to the elevated human health risk associated with exposure to the mixtures of multiple pharmaceuticals detected.


10.4194/afs35 ◽  
2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Adefemi Ajibare ◽  
Peter Ogungbile ◽  
Patrick Ayeku ◽  
John Akande

This study evaluated the human health risks of Mn, Fe, Zn, Cu, Cd, Pb, Cr, Co and Ni in Oreochromis niloticus inhabiting Agodi reservoir in Ibadan, Nigeria. The metals’ concentrations were determined with atomic absorption spectrophotometer. Carcinogenic and non-carcinogenic risk of consumers from the intake of metals in the fish was evaluated by Health Risk Index (HRI), Health quotient (HQ) Target Hazard Quotient (THQ) and Target cancer risk (TR). The metal concentrations in the fish were below the recommended limit by Environmental Protection Agencies. HRI and HQ of each examined metal was greater than one, indicating that there was potential noncarcinogenic health risk associated with the consumption of the fish. However, the THQ and TR were less than one. This indicated that Oreochromis niloticus will not pose any immediate carcinogenic threat to its consumers. It is therefore recommended that only eco-friendly activities should be permitted in/around aquatic ecosystems especially Agodi reservoir in order to keep contaminants below safety limit.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abu Bakkar Siddique ◽  
Mohammad Mahmudur Rahman ◽  
Md. Rafiqul Islam ◽  
Debapriya Mondal ◽  
Ravi Naidu

Rice consumption is a major dietary source of Cd and poses a potential threat to human health. The aims of this study were to examine the influence of Fe and Cd application on yield and yield components, dynamics of Cd in pore water, translocation factors, daily dietary intake, and estimation of human health risks. A pot experiment was performed under glasshouse conditions where rice cultivars (Langi and Quest) were cultivated in two dissimilar soils under different levels of Cd (0, 1.0, and 3.0 mg kg−1) and Fe (0, 1.0, and 2.0 g kg−1). The results showed that variation in two rice cultivars in terms of yield and yield-related components was dose dependent. Cadmium concentration in soil pore water was decreased over time and increased with increasing Cd levels but decreased with Fe application. Translocation factors (TFs) from root to straw (TFroot-straw) or straw to husk (TFstraw-husk) were higher than root to grain (TFroot-grain) or straw to grain (TFstraw-grain). The Quest cultivar had 20% lower Cd than the Langi cultivar. Application of Fe at the rate of 1 and 2 g kg−1 soil reduced Cd by 23 and 46%, respectively. Average daily intake (ADI) of Cd exceeded the permissible limit (5.8 × 10−3 mg −1 kg−1 bw per week) when rice plant subjected 1 and 3 mg kg−1 Cd stress with or without Fe application. Results also indicated that ADI value was lower in the Quest cultivar as compared to the Langi cultivar. Estimation of human health risk revealed that the non-carcinogenic risks (HQ > 1) and carcinogenic risks (CR > 1.0 × 10−4) increased with increasing Cd levels in the soil. The application of Fe decreased the human health risks from rice consumption which is more pronounced in Fe 2.0 than in Fe1.0 treatments. The rice cultivar grown in soil-1 (pH 4.6) showed the highest health risks as compared to soil-2 (pH 6.6) and the Quest cultivar had lower health risks than the Langi cultivar.


2021 ◽  
Author(s):  
Md. Morshedul Haque ◽  
Sajin Sultana ◽  
Nahin Mostofa Niloy ◽  
Shamshad B. Quraishi ◽  
Shafi M. Tareq

Abstract This study investigates pollution levels, source apportionment, ecological and human health risks associated with toxic metals (Pb, As, Hg, Cr, and Cd) in road dust from the most populated Dhaka city and a connected major highway in Bangladesh. The mean concentration of Pb, Hg, and Cd were 1.3, 29.3, and 13.2 times higher than their corresponding background values with spatially uneven distribution all over the study area. Metal pollution indices, the geo-accumulation index (Igeo), NIPI, PI, indicated extreme contamination at many sites depending on local environmental factors. The potential ecological risk (\({\text{E}}_{\text{r}}^{\text{i}})\) revealed that 84% and 54% of samples showed the extreme ecological risk for Hg and Cd pollution, respectively. On the other hand, the potential ecological risk index (PERI) and nemerow integrated risk index (NIRI) showed that most sampling sites suffered high to extreme ecological risk. Source apportionment using positive matrix factorization (PMF) identified coal combustion and gasoline (50.14%), traffic exhaust (35.26%), and industrial and agriculture activity (14.60%) were the main source of toxic metals of the study area. Non-carcinogenic health risk indicated that adults are more vulnerable than children, and hazard index (HI) of Hg for both age groups and Cd for adults were significantly higher than the safe level. The carcinogenic risk (CR) levels of toxic metals were acceptable (10− 6 to 10− 4), although the maximum limit of Cr for children and As for adults was close to the unacceptable limit (10− 4). Continual exposure to toxic metals through road dust might develop lifetime cancer risk in local inhabitants.


2019 ◽  
Vol 11 (18) ◽  
pp. 4828 ◽  
Author(s):  
Na Wang ◽  
Jichang Han ◽  
Yang Wei ◽  
Gang Li ◽  
Yingying Sun

Xunyang is rich in various metal minerals and is one of the four major metal mining areas in Shaanxi province, China. To explore the effects of soil heavy metals and metalloid pollution on the environment and human health around the mining areas, four places—Donghecun (D), Gongguan (G), Qingtonggou (Q) and Nanshagou (N)—were selected as the sampling sites. Potential ecological risk (PER) and health risk assessment (HRA) models were used to analyze the environmental and health risks around the mining areas. The concentration of heavy metals (Cd, Cr, Pb, Zn, Ni, Cu, Hg) and metalloid (As) in cultivated land in the vicinity of Xunyang mining areas indicated that, except for Cu, the remaining elements detected exceeded the threshold values at some sites. The geo-accumulation index (IGeo) revealed that soils in G and Q could be identified as being extremely contaminated. PER indicated that there was significantly high risk at G and Q for Hg. In N, Pb recorded the highest E r i , which also demonstrates a considerable pre-existing risk. HRA indicated that the hazard index (HI) for both carcinogenic and non-carcinogenic risks was much higher among children than among adults, and the ingestion pathway contributed the greatest risk to human health, followed by the dermal pathway and inhalation. Because the HI values of the metals and metalloid in the study areas were all lower than 1, there was no significant non-carcinogenic risk. However, the carcinogenic risk for Cr is relatively higher, surpassing the tolerable values in G, Q, and N. This study analyzed the ecological risks and human health risks of heavy metals and metalloid in farmland soils near the sampling mining areas, and demonstrated the importance of environmental changes caused by land development in the mining industry.


Author(s):  
Chang-Chen Haung ◽  
Li-mei Cai ◽  
Yao-Hui Xu ◽  
Han-Hui Wen ◽  
Jie Luo ◽  
...  

In this research, enrichment factor (EF) and pollution load index (PLI) were utilized to estimate the features of enrichment and contamination of PTEs in farmland soil. Furthermore, combining the spatial distribution characteristics of potentially toxic elements (PTEs) and positive matrix factorization (PMF) to distinguish and quantify the sources of PTEs in farmland soil, and then the potential ecological risk (PER) and human health risk (HHR) model based on PMF are applied to quantify the ecological and human health risks from different sources. Taking Puning District as an example, four sources of PTEs in farmland soil were quantitatively allocated. For ecological risk, the study area is at moderate ecological hazard level, and industrial activities were the greatest contributor. The mean E_r^i of Hg were 69.82, reaching medium ecological risk level. For human health risks, both adults and children have no evident non-carcinogenic risk in the study area. And natural source was the largest contributor to non-carcinogenic risk, followed by agricultural activities. With regard to carcinogenic risk, tolerable risks of soil PTEs in the study area were limited not only for adults but also for children. Furthermore, compared with adults, the health risks of children, whether non-carcinogenic or carcinogenic, were higher than those of adults, and the trends in health risks for children and adults were similar. A comprehensive scheme combining source contribution and risk assessment is conducive to quantitatively assess ecological risks, health risks and priority pollution sources, thereupon provide effective suggestions for protecting human health and preventing and controlling pollution.


2013 ◽  
Vol 244-245 ◽  
pp. 225-239 ◽  
Author(s):  
Mojgan Yeganeh ◽  
Majid Afyuni ◽  
Amir-Hosein Khoshgoftarmanesh ◽  
Loghman Khodakarami ◽  
Manouchehr Amini ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rahman ◽  
N. C. Mondal ◽  
K. K. Tiwari

AbstractAn increased nitrate (NO3−) concentration in groundwater has been a rising issue on a global scale in recent years. Different consumption mechanisms clearly illustrate the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3− concentrations in groundwater in a semi arid area of Rajasthan and its related risks to human health in the different groups of ages such as children, males, and females. We have found that most of the samples (n = 90) were influenced by anthropogenic activities. The background level of NO3− had been estimated as 7.2 mg/L using a probabilistic approach. About 93% of nitrate samples exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as per the BIS limits. The results show that the oral exposure of nitrate was very high as compare to dermal contact. With regard to the non-carcinogenic health risk, the total Hazard Index (HITotal) values of groundwater nitrate were an average of 0.895 for males, 1.058 for females, and 1.214 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of the samples constitute the non-carcinogenic health risk to males, females, and children, respectively. Children were found to be more prone to health risks due to the potential exposure to groundwater nitrate.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 783
Author(s):  
Feifei Chen ◽  
Leihua Yao ◽  
Gang Mei ◽  
Yinsheng Shang ◽  
Fansheng Xiong ◽  
...  

Groundwater is a valuable water source for drinking and irrigation purposes in semiarid regions. Groundwater pollution may affect human health if it is not pretreated and provided for human use. This study investigated the hydrochemical characteristics driving groundwater quality for drinking and irrigation purposes and potential human health risks in the Xinzhou Basin, Shanxi Province, North China. More specifically, we first investigated hydrochemical characteristics using a descriptive statistical analysis method. We then classified the hydrochemical types and analyzed the evolution mechanisms of groundwater using Piper and Gibbs diagrams. Finally, we appraised the groundwater quality for drinking and irrigation purposes using the entropy water quality index (EWQI). We assessed the associated human health risks for different age and sex groups through drinking intake and dermal contact pathways. Overall, we found that (1) Ca-HCO3 and Ca·Mg-HCO3 were the dominant hydrochemical types and were mainly governed by rock weathering and water–rock interactions. (2) Based on the EWQI classifications, 67.74% of the groundwater samples were classified as medium quality and acceptable for drinking purpose. According to the values of sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and soluble sodium percentage (%Na), 90.32% of the samples were suitable for irrigation, while the remaining samples were unfit for irrigation because of the high salinity in the groundwater. (3) Some contaminants in the groundwater, such as NO3−, NO2− and F−, exceeded the standard limits and may cause potential risks to human health. Our work presented in this paper could establish reasonable management strategies for sustainable groundwater quality protection to protect public health.


Sign in / Sign up

Export Citation Format

Share Document