scholarly journals Performance of sustainable self-compacting fiber reinforced concrete with substitution of marble waste (MW) and coconut fibers (CFs)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jawad Ahmad ◽  
Fahid Aslam ◽  
Rebeca Martinez-Garcia ◽  
Mohamed Hechmi El Ouni ◽  
Khalid Mohamed Khedher

AbstractSelf compacting concrete (SCC) is special type of concrete which is highly flowable and non-segregated and by its own mass, spreads into the formwork without any external vibrators, even in the presence of thick reinforcement. But SSC is also brittle nature like conventional concrete, which results in abrupt failure without giving any deformation (warning), which is undesirable for any structural member. Thus, self-compacting concrete (SCC) needs some of tensile reinforcement to enhance tensile strength and prevent the unsuitable abrupt failure. But fiber increased tensile strength of concrete more effectively than compressive strength. Hence, it is essential to add pozzolanic materials into fiber reinforced concrete to achieve high strength, durable and ductile concrete. This study is conducted to assess the performance of SCC with substitutions of marble waste (MW) and coconut fiber (CFs) into SCC. MW utilized as cementitious (pozzolanic) materials in percentage of 5.0 to 30% in increment of 5.0% by weight of binder and concrete is reinforced with CFs in proportion of 0.5 to 3.0% in increment of 0.5% by weight of binder. Rheological characteristics were measured through its filling and passing ability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical characteristics were measured through compressive strength, split tensile strength, flexure strength and bond strength (pull out) tests. Experimental investigation show that MW and CFs decrease the passing ability and filling ability of SCC. Additionally, Experimental investigation show that MW up to 20% and CFs addition 2.0% by weight of binder tend to increase the mechanical performance of SCC. Furthermore, statistical analysis (RSM) was used to optimize the combined dose of MW and CFs into SCC to obtain high strength self-compacting concrete.

2011 ◽  
Vol 261-263 ◽  
pp. 125-129 ◽  
Author(s):  
Venu Malagavelli ◽  
Neelakanteswara Rao Paturu

Construction field has experienced a growing interest in Fiber Reinforced Concrete (FRC) due to its various advantages. The disposal of industrial waste especially non biodegradable waste is creating a lot of problems in the environment. In the present investigation, an attempt has been made by using non biodegradable waste (polyester fibers) in the concrete to improve the crack resistance and strength. Concrete having compressive strength of 25MPa is used for this study. Samples were prepared by using various fiber contents starting from 0 to 6% of with an increment of 0.5% for finding Compressive strength, split tensile strength and flexural strengths. It is observed that, compressive strength, split tensile strength and flexural strengths of concretes is increasing as the fiber content is increased up to some extent.


2021 ◽  
Author(s):  
jawad Ahmad ◽  
Fahad Aslam F.A

Abstract Self compacting concrete (SSC) is also brittle nature, resulting in abrupt failure without giving any warning, which is unacceptable for any construction materials. Therefore, SCC requires tensile reinforcement to increase tensile capacity and avoid the undesirable brittle failure of SCC. However, fiber improved tensile capacity more efficiently than compressive strength. Therefore, it important add pozzolanic material to fiber reinforced concrete to obtain high strength, durable and ductile concrete. This research is carried out to evaluate the qualities of concrete with addition of waste marble and coconut fiber in concrete. Marble waste used as binding (pozzolanic) materials in proportion of 5.0 to 30% by weight of cement in increment of 5.0% and concrete is reinforced with coconut fiber in proportion of 0.5% to 3.0% by weight of cement in increment of 0.5 %. Rheological properties were assessed through its passing ability and flowability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical performance were evaluated through compressive, split tensile, flexure and pull out tests. Tests results indicate that marble waste and coconut fiber decrease the passing ability and filling ability of SCC. Furthermore, tests results indicate that marble waste up to 20% and coconut fiber addition 2.0% by weight of cement have a tendency to enhance the mechanical strength of SCC. Finally, Statistical analysis (RSM) was used to optimize the combined substitution of marble waste and coconut fiber to obtain high strength concrete.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2013 ◽  
Vol 372 ◽  
pp. 215-218 ◽  
Author(s):  
Hye Ran Kim ◽  
Seung Ju Han ◽  
Hyun Do Yun

This paper describes the experimental results of 70 MPa high strength steel fiber reinforced concrete (SFRC) with different steel fiber volume fractions in compression. The effect of steel fiber on fresh properties, compressive strength, toughness index, cracking procedure of high strength steel fiber concrete is also investigated. The steel fibers were added as the volume fractions of 0%, 0.5%, 1.0%, 1.5% and 2.0%. The cylindrical specimens with Φ100 x 200 for compressive tests were manufactured in accordance with ASTM C 39[. The experimental results showed that the slump of fresh SFRC was inversely proportional to the fiber volume fraction added to high strength concrete. As the addition of steel fiber increased, compressive strength of SFRC decreased. Inclusion of steel fiber improves compressive toughness of high strength SFRC.


2020 ◽  
Vol 7 (3) ◽  
pp. 115-139
Author(s):  
Sarkawt Karim ◽  
◽  
Azad Mohammed ◽  

This study describes two workability tests, compressive strength and tensile strength tests of high strength flowable concrete containing plastic fiber prepared from polyethylene terephthalate (PET) waste bottles. For the high fluidity mix Vebe time and V-funnel time tests were carried out. Results show that there is a Vebe time increase with PET fiber addition to concrete being increased with increasing fiber volume and fiber length. V-funnel time was found to reduce when up to 0.75% fiber volume is added to concrete, followed by an increase for larger fiber volumes. When fiber length is increase, there is more time increase, but in general, V-funnel time increase was lower than that of Vebe time, indicating a different influence of PET fiber on the compatibility and flowability. The measured V-funnel time for all mixes was found to conform to the limits of European specifications on the flowability of self compacting concrete. Small descending in compressive strength was recorded for RPET fiber reinforced concrete that reached 15.74 % for 1.5 percent fiber content with 10 mm fiber length. Attractive results was recorded in split tensile strength of RPET fibrous samples which resulted in improvement up to 63.3 % for 1.5 percent of 40 mm fiber length content.


Author(s):  
Maxim MARCHENKO ◽  
Igor CHILIN ◽  
Nikita SELYUTIN

The article presents examples of the use of ultra-high performance fiber reinforced concrete for load-bearing structures in Russia. Using this material with limits of compressive strength 150 MPa, flexural tensile strength 21 MPa, tensile strength 8.5 MPa, external post-tensioned structures of bridges and tanks are made instead of common solution with the steel anchors. Full-scale tests of anchors were carried out, which did not reveal signs of deformations and destruction of elements during the tension of strands, at the level of design and ultimate loads - before strands rupture. It was concluded that it is advisable to replace steel anchors with anchors from the material, which, with high strength characteristics, has ultra-low permeability and high frost resistance corresponding to the F21000 class. The estimated economic effect of such a replacement is determined by the reduced cost of these elements of structures made of ultra-high performance fiber reinforced concrete in comparison with steel.


Author(s):  
Zarina Itam ◽  
Salmia Beddu ◽  
Nur Amalina Nadiah Basri

In the past decades, Fiber Reinforced Concrete has been gaining more attention in the concrete research development. There are many advantages of the inclusion of fiber into reinforced concrete structures. It was found that the inclusion of fibers in concrete, be it synthetic or natural, resulted in the improvement of the thermal properties of concrete, as well as its strength to some extent. However, the inclusion of fibers in concrete does affects its thermo-mechanical properties. The objective of this study is to identify the potential of the addition Polypropylene and Kenaf fibers in cement mortar at different compositions (0.1%, 0.2%, and 0.3%). Eight mixes were analyzed for this purpose. Upon investigating the flow ability, compressive strength, tensile strength, and thermal conductivity of the mortar samples, it was found that the incorporation of PP and Kenaf fibers reduced the flow ability. Cement mortar samples containing 0.1% addition of PP and Kenaf fibers show the highest compressive strength compared to other percentages, while samples containing 0.3% addition of PP and Kenaf fibers show the highest tensile strength compared to other percentages. The thermal conductivity of mortar samples shows reduction when high percentages of both fibers were used.


Author(s):  
Rao Krishna ◽  
Rathish Kumar ◽  
B. Srinivas

Concrete is a versatile material with tremendous applications in civil engineering construction. Structural concrete elements are generally made with concrete having a compressive strength of 20 to 35 MPa. Lately, there is an increase in use of high strength concrete (HSC) in major construction projects such as high-rise buildings, and bridges involving members of different sizes and shapes. The compressive strength of concrete is used as the most basic and important material property in the design of reinforced concrete structures. It has become a problem to use this value as the control specimen sizes and shapes are different from country to country. In India, the characteristic compressive strength is usually measured based on 150 mm cubes [1]. But, the ACI code of practice specifies the design compressive strength based on the standard 150x300 mm cylinders [2]. The use of 100x200 mm cylinders gained more acceptance as the need to test high strength concrete increases [3]. In this context the size and shape of concrete becomes an important parameter for the compressive strength. In view of the significance of compressive strength of concrete and due to the fact that the structural elements of different sizes and shapes are used, it is proposed to investigate the effect of size and shape of the specimen on the compressive strength of concrete. In this work, specimens of plain as well as Glass Fiber Reinforced Concrete (GFRC) specimens are cast in order to carry out a comparative study.


The experimental investigation achieved the high early strength of fiber reinforced concrete by adding slag (GGBS), rapid hardening admixture, and steel fibers. This concrete is done curing for seven days and followed by hot air oven curing for four hours as per different mixes. Tests such as destructive and non-destructive test have been performed. During the testing of the cube which is cured for seven days has achieved the high compressive strength of 42.24 N/mm2 for M25 Grade of concrete


2019 ◽  
Vol 1 (2) ◽  
pp. 180-186
Author(s):  
Dilan Rantung ◽  
Steve W.M. Supit ◽  
Seska Nicolaas

This paper aims to investigate experimentally the influence of replacing cement with different fineness of fly ash based on flowability, passing ability, compressive strength, tensile strength (splitting). Concretes with 15% fly ash (passed a number 100 sieve) and fine fly ash (passed a number 200 sieve) as cement replacement were cast and tested at 7, 14, 28 days after water curing. A superplasticizer in the form of viscocrete 3115 N was constantly used for each concrete mixtures as much as 1% by weight of cement. The results show that the use of fly ash does not significantly increased the compressive strength and tensile strength of SCC mixtures. However, concrete with 15% fine fly ash its self and combined 7.5% fly ash with 7.5% fine fly ash show better flowability and passing ability when compared to concrete with cement only indicating the performance of using smaller particle sizes of fly ash could lead better properties of SCC that can be potentially used for building construction application.


Sign in / Sign up

Export Citation Format

Share Document