A Novel Hybrid Deep Multi-Criteria Model for Recommender System

Author(s):  
Nour Salim Nassar

Abstract Recommender systems are everywhere books, products, movies, and more. Traditional recommender systems typically use a single criterion in the recommendation, while studies have shown that multi-criteria recommending is more accurate. Novel deep learning techniques have produced remarkable achievements in many fields. The use of such techniques in recommendation systems has started to get attention recently, and several models of recommendation have been proposed based on deep learning. However, there is still no work for using deep learning in hybrid multi-criteria recommender systems. In this work, a model for a hybrid deep multi-criteria recommender system was presented. The model mainly includes two major parts: In the first one, the model obtains the user ID, item ID, and the item metadata to be used as input to a deep neural network in order to predict the criteria ratings. In the second part, the obtained ratings act as an input to another deep neural network, where the overall rating is predicted. Our experiments were conducted on a real-world dataset. They demonstrated the superiority of the proposed novel model over the other models in all measures used to evaluate performance. This indicates the successful use of hybrid deep multi-criteria in the recommendation systems.

Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2020 ◽  
Author(s):  
Hamid Hassanpour

This is a paper regarding application of deep neural network in prediction of Forex market. It utilized advanced deep learning techniques and software package in order ti evaluate capability of deep neural network in market behavior prediction.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 15
Author(s):  
Manuel Gil-Martín ◽  
Marcos Sánchez-Hernández ◽  
Rubén San-Segundo

Deep learning techniques are being widely applied to Human Activity Recognition (HAR). This paper describes the implementation and evaluation of a HAR system for daily life activities using the accelerometer of an iPhone 6S. This system is based on a deep neural network including convolutional layers for feature extraction from accelerations and fully-connected layers for classification. Different transformations have been applied to the acceleration signals in order to find the appropriate input data to the deep neural network. This study has used acceleration recordings from the MotionSense dataset, where 24 subjects performed 6 activities: walking downstairs, walking upstairs, sitting, standing, walking and jogging. The evaluation has been performed using a subject-wise cross-validation: recordings from the same subject do not appear in training and testing sets at the same time. The proposed system has obtained a 9% improvement in accuracy compared to the baseline system based on Support Vector Machines. The best results have been obtained using raw data as input to a deep neural network composed of two convolutional and two max-pooling layers with decreasing kernel sizes. Results suggest that using the module of the Fourier transform as inputs provides better results when classifying only between dynamic activities.


2021 ◽  
Author(s):  
Sara Saleh Alfozan ◽  
Mohamad Mahdi Hassan

Infection of agricultural plants is a serious threat to food safety. It can severely damage plants' yielding capacity. Farmers are the primary victims of this threat. Due to the advancement of AI, image-based intelligent apps can play a vital role in mitigating this threat by quick and early detection of plants infections. In this paper, we present a mobile app in this regard. We have developed MajraDoc to detect some common diseases in local agricultural plants. We have created a dataset of 10886 images for ten classes of plants diseases to train the deep neural network. The VGG-19 network model was modified and trained using transfer learning techniques. The model achieved high accuracy, and the application performed well in predicting all ten classes of infections.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Vol 21 (3) ◽  
pp. 175-188
Author(s):  
Sumaiya Thaseen Ikram ◽  
Aswani Kumar Cherukuri ◽  
Babu Poorva ◽  
Pamidi Sai Ushasree ◽  
Yishuo Zhang ◽  
...  

Abstract Intrusion Detection Systems (IDSs) utilise deep learning techniques to identify intrusions with maximum accuracy and reduce false alarm rates. The feature extraction is also automated in these techniques. In this paper, an ensemble of different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked to build a robust anomaly detection model. The performance of the ensemble model is analysed on different datasets, namely UNSW-NB15 and a campus generated dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of VIT_SPARC20 is categorised by the deep learning models without decrypting its contents, thus preserving the confidentiality and integrity of the data transmitted. XGBoost integrates the results of each deep learning model to achieve higher accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of accuracy, precision and recall are 99.4%. 98% and 97%, respectively.


Author(s):  
P. Nagaraj ◽  
P. Deepalakshmi

Diabetes, caused by the rise in level of glucose in blood, has many latest devices to identify from blood samples. Diabetes, when unnoticed, may bring many serious diseases like heart attack, kidney disease. In this way, there is a requirement for solid research and learning model’s enhancement in the field of gestational diabetes identification and analysis. SVM is one of the powerful classification models in machine learning, and similarly, Deep Neural Network is powerful under deep learning models. In this work, we applied Enhanced Support Vector Machine and Deep Learning model Deep Neural Network for diabetes prediction and screening. The proposed method uses Deep Neural Network obtaining its input from the output of Enhanced Support Vector Machine, thus having a combined efficacy. The dataset we considered includes 768 patients’ data with eight major features and a target column with result “Positive” or “Negative”. Experiment is done with Python and the outcome of our demonstration shows that the deep Learning model gives more efficiency for diabetes prediction.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Umashankar Subramaniam ◽  
M. Monica Subashini ◽  
Dhafer Almakhles ◽  
Alagar Karthick ◽  
S. Manoharan

The proposed method introduces algorithms for the preprocessing of normal, COVID-19, and pneumonia X-ray lung images which promote the accuracy of classification when compared with raw (unprocessed) X-ray lung images. Preprocessing of an image improves the quality of an image increasing the intersection over union scores in segmentation of lungs from the X-ray images. The authors have implemented an efficient preprocessing and classification technique for respiratory disease detection. In this proposed method, the histogram of oriented gradients (HOG) algorithm, Haar transform (Haar), and local binary pattern (LBP) algorithm were applied on lung X-ray images to extract the best features and segment the left lung and right lung. The segmentation of lungs from the X-ray can improve the accuracy of results in COVID-19 detection algorithms or any machine/deep learning techniques. The segmented lungs are validated over intersection over union scores to compare the algorithms. The preprocessed X-ray image results in better accuracy in classification for all three classes (normal/COVID-19/pneumonia) than unprocessed raw images. VGGNet, AlexNet, Resnet, and the proposed deep neural network were implemented for the classification of respiratory diseases. Among these architectures, the proposed deep neural network outperformed the other models with better classification accuracy.


Ship Extraction is very important in the marine industry. Extraction of ships is helpful to the fishers to find the other ships nearly around the particular area. Still today the fishers are to find the ships using some traditional methods. But now it became difficult due to environmental changes. So, by using the deep learning techniques like the CNN algorithm the ship extraction can be identified effectively. Generally, the ships are identified as narrow bow and parallel hull edge, etc. Here, the Existing system they have used the Tensor flow, to see the performance of the datasets, using Recall and precision. In the proposed system, we are using CNN deep learning techniques to identify the ships. By finding the ships with the techniques, the time will be saved and the productivity can be increased. The features of the ship image are taken and trained using the neural network algorithm and then the prediction is done by testing the images.


Author(s):  
Yantao Yu ◽  
Zhen Wang ◽  
Bo Yuan

Factorization machines (FMs) are a class of general predictors working effectively with sparse data, which represents features using factorized parameters and weights. However, the accuracy of FMs can be adversely affected by the fixed representation trained for each feature, as the same feature is usually not equally predictive and useful in different instances. In fact, the inaccurate representation of features may even introduce noise and degrade the overall performance. In this work, we improve FMs by explicitly considering the impact of individual input upon the representation of features. We propose a novel model named \textit{Input-aware Factorization Machine} (IFM), which learns a unique input-aware factor for the same feature in different instances via a neural network. Comprehensive experiments on three real-world recommendation datasets are used to demonstrate the effectiveness and mechanism of IFM. Empirical results indicate that IFM is significantly better than the standard FM model and consistently outperforms four state-of-the-art deep learning based methods.


Sign in / Sign up

Export Citation Format

Share Document