scholarly journals Synthesis of Benzenesulfonamide Derivatives Via Ring Opening of Aziridines In The Presence of Magnetically Retrievable Graphene Based (CoFe@rGO) Nanohybrid.

Author(s):  
Ankush Sheoran ◽  
Komal ◽  
Jaspreet Kaur ◽  
Paramdeep Kaur ◽  
Jyoti Agarwal ◽  
...  

Abstract Graphene based magnetic nanohybrids have engrossed considerable research curiosity because of their exceptional properties and diverse applications associated with green chemistry. In this regard, a practical, facile and regioselective preparation of 1,2-diamines from N-tosylaziridine/(S)-(+)-2-Benzyl-1-(p-tolylsulfonyl)aziridine and aryl amines in the presence of magnetically separable graphene based nanohybrid (CoFe@rGO) has been proposed under mild and solvent free conditions. The FT-IR, FE-SEM, XRD and EDX spectroscopic analysis confirmed the formation of the CoFe@rGO nanohybrids. For unsymmetrical aziridine, nucleophilic attack of aryl amines was observed to take place selectively at the more substituted carbon atom of aziridine ring. Environmentally benign, efficient, shorter reaction time, solvent-free conditions, low catalyst loading, excellent reaction yields and reusability of the catalyst for six consecutive runs without significant loss in its activity are the key advantages of this protocol.

2020 ◽  
Author(s):  
Kumar Godugu ◽  
Venkata Divya Sri Yadala ◽  
Mohammad Khaja Mohinuddin Pinjari ◽  
Thrivikram Reddy Gundala ◽  
Lakshmi Reddy Sanapareddy ◽  
...  

In this paper, for the first time, naturally occurring dolomitic limestone is employed as a heterogeneous green catalyst for the synthesis of medicinally valuable N-heterocycles, 2-aryl-1-arylmethyl-1H-benzo[d]imidazoles, dihydropyrimidinones/ thiones and 2-amino-4-aryl-3,5-dicarbonitrile-6-sulfanyl-pyridines in good to excellent isolated yields via a rapid construction of C-N, C-C and C-S bond formations in 1:1 ratio of ethanol:H2O under ultrasound irradiation. Dolomitic limestone is characterized by X-ray diffraction (XRD), FT-IR, Raman and SEM with EDAX analyses. Further, the catalyst is environmentally benevolent, non-toxic, most abundant, easy to handle low catalyst loading and is reused 7 times without significant loss of catalytic activity. Hence, the catalyst is greener alternative for the synthesis of aforementioned N-heterocycles as compared with the existing reported catalysts.


2020 ◽  
Vol 17 (4) ◽  
pp. 304-312
Author(s):  
Leila Z. Fekri

Background: Imidazo[1,2-a]pyrimidinone, quinazolinone and amide derivatives have attracted a lot of interest because of their broad scope of biological and pharmacological activities. There are a lot of methods reported in the literature for their synthesis. Therefore, we became interested in developing a convenient synthetic method for the preparation of imidazoquinazolinone and amide derivatives. Objective: NiFe2O4@SiO2 @glucose amine were synthesized, characterized and have been used for the green, effective and mild multicomponent synthesis of quinazolinones, benzoimidazo[1,2-a]pyrimidinones and amides under solvent-free conditions in short reaction times and excellent yields. To expand of the scope of this avenue, multicomponent synthesis of mono and bis novel amides was tested for the first time. All of the products were characterized by mp, FT-IR, NMR and elemental analysis. Methods: Aldehyde (1mmol), 2-amino benzimidazole (1 mmol), dimedone (1mmol) or indane-1,3-dione (1 mmol) for the synthesis of quinazoline or imidazopyrimidinones and arene (1mmol), anhydride (1mmol), 2- aminobenzimidazole (1mmol) for the synthesis of amides in the nanocatalyst NiFe2O4@SiO2@glucose amine (0.15mol%: 0.05g) were stirred by a magnet for the required reaction time. After completion of the reaction, as indicated by TLC, the products were collected and recrystallized from ethanol if necessary. Results: We present a novel avenue for the synthesis of benzimidazo[1,2-a] pyrimidinones, quinazolinones and amides in the presence of NiFe2O4@SiO2@glucose amine under solvent-free conditions. Conclusion: In conclusion, we developed NiFe2O4@SiO2 @glucose amine-catalysed multicomponent synthesis of quinazolinones and imidazo[1,2-a]pyrimidinones using the reaction of benzaldehyde, dimedone or indane-dione and 2-aminobenzimidazole and multicomponent synthesis of amides using arenes, cyclic anhydrides and 2-aminobenzimidazole by a solvent-free technique. This method proves to be a robust and innovative approach for the synthesis of a biologically important structure. The operational simplicity, the excellent yields of products, ease of separation and recyclability of the magnetic catalyst, waste reduction and high selectivity are the main advantages of this method. Furthermore, this new avenue is cheap and environmentally benign.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2936 ◽  
Author(s):  
Zhiping Che ◽  
Yuee Tian ◽  
Shengming Liu ◽  
Jia Jiang ◽  
Mei Hu ◽  
...  

A series of 2-alkyl-2-(N-arylsulfonylindol-3-yl)-3-N-acyl-5-aryl-1,3,4-oxadiazolines were expeditious prepared under microwave-assisted, catalyzed by HgCl2 and solvent-free conditions. This method has the advantage of low catalyst loading and recovering catalyst, ease reaction and repaid reaction times, easy separation products and excellent yields, and more conducive to the large-scale synthesis products. Furthermore, compounds 3s, 3y, 3a′, 3b′, 3f′, 3i′, 3q′, and 3r′ exhibited more potent anti-HIV-1 activity with EC50 values of 3.35, 6.12, 3.63, 9.54, 1.79, 0.51, 3.00, and 4.01 μg/mL, and TI values of 32.66, >32.68, 31.22, 13.94, 24.27, 39.59, 26.01, and 24.51, respectively. Especially compound 3i′ displayed the highest anti-HIV-1 activity with TI values of 39.59.


2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.


RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46074-46087 ◽  
Author(s):  
Giovanna Bosica ◽  
John Gabarretta

An environmentally benign, one-pot, A3-coupling reaction of various aldehydes, amines and terminal alkynes for the synthesis of propargylamine was catalysed by Amberlyst A-21 supported CuI, under heterogeneous and solvent-free conditions.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 783 ◽  
Author(s):  
Jana Pisk ◽  
Dominique Agustin ◽  
Rinaldo Poli

Adipic acid (AA) was obtained by catalyzed oxidation of cyclohexene, epoxycyclohexane, or cyclohexanediol under organic solvent-free conditions using aqueous hydrogen peroxide (30%) as an oxidizing agent and molybdenum- or tungsten-based Keggin polyoxometalates (POMs) surrounded by organic cations or ionically supported on functionalized Merrifield resins. Operating under these environmentally friendly, greener conditions and with low catalyst loading (0.025% for the molecular salts and 0.001–0.007% for the supported POMs), AA could be produced in interesting yields.


2019 ◽  
Vol 6 (3) ◽  
pp. 238-247
Author(s):  
Swapnil R. Bankar

<P>Background: In recent years, green organic transformation has become a challenge for a chemist in areas like social sector, health, and environment. Literature survey revealed that a nano magnetite supported heterogeneous catalysis is an emergent field with huge application in chemical synthesis. </P><P> Objective: In the present article, the aim was to develop a simple and facile method to carry organic reaction under benign media. So, the focus was on the synthesis of nano-magnetite supported molybdenum catalyst and its application in β-enaminones synthesis. </P><P> Methods: Magnetically recyclable heterogeneous ferrite-molybdenum catalyst was prepared by simple impregnation method. The synthesized nanocatalyst Fe-Mo was well analysed by spectroscopic techniques like X-ray diffraction analysis, X-ray photoelectron spectroscopy, transmission electron microscopy, field-emission gun scanning electron microscopy and vibrating-sample magnetometry. The functionalized nanocatalyst Fe-Mo was employed in the synthesis of β-enaminones under solvent free condition. </P><P> Results: The competency of synthesized nanocatalyst-Fe-Mo was observed to be good for the synthesis of β-enaminones derivatives under microwave irradiation and gave excellent yield (86-96%) of the product. The catalyst was recycled for more than five consecutive runs without significant loss in its activity. </P><P> Conclusion: In the present research article, synthesis of highly active, magnetically recyclable Fe- Mo nanocatalyst was obtained from easily available precursor. The MNP was stable under investigated conditions and effective in β-enaminones synthesis. The simple eco-friendly method, low catalyst loading, short transformation time, and reusability of the catalyst thoroughly follow the sustainable protocol.</P>


Sign in / Sign up

Export Citation Format

Share Document