scholarly journals Diversity In Intestinal Microorganisms Contributes To The Bodysize Difference In Chinese Horses And Ponies

Author(s):  
Shipeng Lv ◽  
Yanli Zhang ◽  
Zhengkai Zhang ◽  
Sihan Meng ◽  
Yabin Pu ◽  
...  

Abstract Background: Intestinal microbiota communities can reflect the digestion and metabolism of the host, as well as the appearance of the host. In China, there are various excellent horse and pony breeds with rich diversity in wither height. However, little is known about the community structure of the intestinal microbiota in horses, let alone the profound effects it causes. Results: Here in, we generated 16S rRNA sequences of intestinal microorganisms from 118 Chinese horses including Guanzhong horse, Debao pony, and Ningqiang pony. We found that the intestinal microbiota of horses is full of diversity, and Firmicutes, Bacteroidetes, and Spirochaetes, which is consistent with the special structure of the horse digestive tract. Interestingly, the abundance of Firmicutes and Bacteroidetes at the phylum level, showed a strong correlation with horse height, with R values of 0.82 and -0.86 respectively. Moreover, at the genus level, Coprococcus, Streptococcus, Treponema, and Prevotella demonstrated higher significance in terms of height, the prediction of PICRUSt2 function and multiple analyses of the metabolic pathways, and additionally, the metabolic pathways of energy intake and utilization were significantly enriched in horses relative to ponies (P<0.01). Notably, flora colonization in mouse littermates contributed to their broad development compared to the control group. Conclusions: Compared with ponies, the intestinal microbiota enabled better cellulose decomposition and energy uptake in horses; Thus horses could get more energy from food to meet their higher demand for larger body development than ponies. Therefore, our study helps to understand the gut microbiota patterns across equine breeds, which has the potential to advance approaches aimed at personalized microbial modifications in horse breeding.

2021 ◽  
Vol 11 ◽  
Author(s):  
Li Gong ◽  
Baikui Wang ◽  
Yuanhao Zhou ◽  
Li Tang ◽  
Zihan Zeng ◽  
...  

This study aimed to investigate the protective effects of Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) against Clostridium perfringens (Cp) infection in broilers. A total of 720 one-day-old chicks were randomly divided into four groups. The control and Cp group were only fed a basal diet, while the two treatment groups received basal diets supplemented with Lac16 (1 × 108 cfu·kg−1) and BSC10 (1 × 108 cfu·kg−1) for 21 days, respectively. On day 1 and days 14 to 20, birds except those in the control group were challenged with 1 × 108 cfu C. perfringens type A strain once a day. The results showed that both Lac16 and BSC10 could ameliorate intestinal structure damage caused by C. perfringens infection. C. perfringens infection induced apoptosis by increasing the expression of Bax and p53 and decreasing Bcl-2 expression and inflammation evidence by higher levels of IFN-γ, IL-6, IL-1β, iNOS, and IL-10 in the ileum mucosa, and NO production in jejunal mucosa, which was reversed by Lac16 and BSC10 treatment except for IL-1β (P &lt; 0.05). Besides, the two probiotics restored the intestinal microbiota imbalance induced by C. perfringens infection, characterized by the reduced Firmicutes and Proteobacteria and the increased Bacteroidetes at the phyla level and decreased Bacteroides fragilis and Gallibacterium anatis at the genus level. The two probiotics also reversed metabolic pathways of the microbiota in C. perfringens-infected broilers, including B-vitamin biosynthesis, peptidoglycan biosynthesis, and pyruvate fermentation to acetate and lactate II pathway. In conclusion, Lac16 and BSC10 can effectively protect broilers against C. perfringens infection through improved composition and metabolic pathways of the intestinal microbiota, intestinal structure, inflammation, and anti-apoptosis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Fu ◽  
Siwen Li ◽  
Yanfang Jiang ◽  
Xintong Hu ◽  
Hui Wu

Background: The purpose of this study was to investigate the relationship between intestinal microbiota and necrotizing enterocolitis (NEC).Methods: 16S rRNA gene sequencing was used to compare the microbial composition of feces. The first sample was collected within 48 h after birth, then once per week until the NEC diagnosis, and finally 1–2 weeks after treatment or 28 days after birth.Results: The alpha diversity of the microbiota in the NEC group was higher than that in the control group. Beta diversity analysis showed that the control group had a higher similarity at the onset of NEC, while the NEC group was distributed in subgroups. Linear discriminant analysis effect size and taxonomic composition analyses indicated that the abundance of Bacteroides and Actinobacteria in NEC infants at birth was much higher than that in the control group, and this trend continued until NEC occurred. At this time, Rhizobiales, Dysgonomonas, Ochrobactrum, Ralstonia, Pelomonas, Acinetobacter, etc., were also more abundant in NEC infants. The upregulated different metabolic pathways in the NEC group were mainly concentrated on degradation/utilization/assimilation, biosynthesis, and generation of precursor metabolites and energy.Conclusions:1. The microbial community differs according to the time of NEC diagnosis (bounded by 20 days).2. No single microorganism is related to NEC, and the combined effect of multiple species is of great significance in the occurrence of NEC. Premature infants are easily affected by bacteria living in the environment, and compared with ordinary premature infants, NEC infants have a higher abundance of waterborne bacteria. Therefore, attention should be paid to the contamination of water sources and various ventilator pipelines for premature infants hospitalized in the neonatal intensive care unit.3. An in-depth study of the mode of microbial colonization in premature infants combined with the different functions of various metabolic pathways involved in different microorganisms may be able to identify the cause of NEC.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 337 ◽  
Author(s):  
Julio Plaza-Díaz ◽  
Antonio Gómez-Fernández ◽  
Natalia Chueca ◽  
María Torre-Aguilar ◽  
Ángel Gil ◽  
...  

New microbiome sequencing technologies provide novel information about the potential interactions among intestinal microorganisms and the host in some neuropathologies as autism spectrum disorders (ASD). The microbiota–gut–brain axis is an emerging aspect in the generation of autistic behaviors; evidence from animal models suggests that intestinal microbial shifts may produce changes fitting the clinical picture of autism. The aim of the present study was to evaluate the fecal metagenomic profiles in children with ASD and compare them with healthy participants. This comparison allows us to ascertain how mental regression (an important variable in ASD) could influence the intestinal microbiota profile. For this reason, a subclassification in children with ASD by mental regression (AMR) and no mental regression (ANMR) phenotype was performed. The present report was a descriptive observational study. Forty-eight children aged 2–6 years with ASD were included: 30 with ANMR and 18 with AMR. In addition, a control group of 57 normally developing children was selected and matched to the ASD group by sex and age. Fecal samples were analyzed with a metagenomic approach using a next-generation sequencing platform. Several differences between children with ASD, compared with the healthy group, were detected. Namely, Actinobacteria and Proteobacteria at phylum level, as well as, Actinobacteria, Bacilli, Erysipelotrichi, and Gammaproteobacteria at class level were found at higher proportions in children with ASD. Additionally, Proteobacteria levels showed to be augmented exclusively in AMR children. Preliminary results, using a principal component analysis, showed differential patterns in children with ASD, ANMR and AMR, compared to healthy group, both for intestinal microbiota and food patterns. In this study, we report, higher levels of Actinobacteria, Proteobacteria and Bacilli, aside from Erysipelotrichi, and Gammaproteobacteria in children with ASD compared to healthy group. Furthermore, AMR children exhibited higher levels of Proteobacteria. Further analysis using these preliminary results and mixing metagenomic and other “omic” technologies are needed in larger cohorts of children with ASD to confirm these intestinal microbiota changes.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ju-Hyeong Park ◽  
Angela R. Lemons ◽  
Jerry Roseman ◽  
Brett J. Green ◽  
Jean M. Cox-Ganser

An amendment to this paper has been published and can be accessed via the original article.


1990 ◽  
Vol 75 (2-3) ◽  
pp. 105-115 ◽  
Author(s):  
David M. Ward ◽  
Roland Weller ◽  
Mary M. Bateson

2004 ◽  
Vol 186 (9) ◽  
pp. 2629-2635 ◽  
Author(s):  
Silvia G. Acinas ◽  
Luisa A. Marcelino ◽  
Vanja Klepac-Ceraj ◽  
Martin F. Polz

ABSTRACT The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but ∼40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to ∼2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.


2014 ◽  
Vol 60 (12) ◽  
pp. 839-846 ◽  
Author(s):  
Rocío Luque ◽  
Victoria Béjar ◽  
Emilia Quesada ◽  
Inmaculada Llamas

In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1–V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time.


2007 ◽  
Vol 64 (3) ◽  
pp. 303-304 ◽  
Author(s):  
Rafaela de Fátima Neroni ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia is an environmentally threatened tree and the whole biota of the Araucaria Forest should be investigated with the aim of its preservation. Diazotrophic bacteria are extremely important for the maintenance of ecosystems, but they have never been studied in Araucaria Forests. In this study, diazotrophic bacteria were isolated from Araucaria roots and soil, when grown in semi-specific, semi-solid media. The diazotrophic character of some recovered isolates could be confirmed using the acetylene reduction assay. According to their 16S rRNA sequences, most of these isolates belong to the genus Burkholderia.


Sign in / Sign up

Export Citation Format

Share Document