Measurement of Neutrino's Magnetic Monopole Charge, Aether, Dark Energy and Cause of Quantum Mechanical Uncertainty

2020 ◽  
Author(s):  
Eue Jin Jeong ◽  
Dennis Edmondson

Abstract Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, the magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have speculated the possibility, then neutrons must also have a magnetic monopole charge, and the Earth should show signs of having a magnetic monopole charge on a macroscopic scale. To test this hypothesis, experiments were performed to detect the magnetic monopole's effect near the equator by measuring the Earth's radial magnetic force using two balanced high strength neodymium rods magnets that successfully identified the magnetic monopole charge. From this observation, we conclude that at least the electron neutrino which is a byproduct of weak decay of the neutron must be magnetic monopole. We present mathematical expressions for the vacuum electric field based on the findings and discuss various physical consequences related to the symmetry in Maxwell's equations, the origin of quantum mechanical uncertainty, the medium for electromagnetic wave propagation in space, and the logistic distribution of the massive number of magnetic monopoles in the universe. We elaborate on how these seemingly unrelated mysteries in physics are intimately intertwined together around magnetic monopoles.

2020 ◽  
Author(s):  
Eue Jin Jeong ◽  
Dennis Edmondson

Abstract Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, the magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have speculated the possibility, then neutrons must also have a magnetic monopole charge, and the Earth should show signs of having a magnetic monopole charge on a macroscopic scale. To test this hypothesis, experiments were performed to detect the magnetic monopole's effect near the equator by measuring the Earth's radial magnetic force using two balanced high strength neodymium rods magnets that successfully identified the magnetic monopole charge. From this observation, we conclude that at least the electron neutrino which is a byproduct of weak decay of the neutron must be magnetic monopole. We present mathematical expressions for the vacuum electric field based on the findings and discuss various physical consequences related to the symmetry in Maxwell's equations, the origin of quantum mechanical uncertainty, the medium for electromagnetic wave propagation in space, and the logistic distribution of the massive number of magnetic monopoles in the universe. We elaborate on how these seemingly unrelated mysteries in physics are intimately intertwined together around magnetic monopoles.


2020 ◽  
Author(s):  
Eue Jin Jeong ◽  
Dennis Edmondson

Abstract Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, the magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have speculated the possibility, then neutrons must also have a magnetic monopole charge, and the Earth should show signs of having a magnetic monopole charge on a macroscopic scale. To test this hypothesis, experiments were performed to detect the magnetic monopole's effect near the equator by measuring the Earth's radial magnetic force using two balanced high strength neodymium rods magnets that successfully identified the magnetic monopole charge. From this observation, we conclude that at least the electron neutrino which is a byproduct of weak decay of the neutron must be magnetic monopole. We present mathematical expressions for the vacuum electric field based on the findings and discuss various physical consequences related to the symmetry in Maxwell's equations, the origin of quantum mechanical uncertainty, the medium for electromagnetic wave propagation in space, and the logistic distribution of the massive number of magnetic monopoles in the universe. We elaborate on how these seemingly unrelated mysteries in physics are intimately intertwined together around magnetic monopoles.


Matter in the Universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the Universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the Universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the Universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.


Author(s):  
Rishu Verma ◽  
Monal Kashav ◽  
Ankush B ◽  
Gazal Sharma ◽  
Surender Verma ◽  
...  

Neutrinos are perhaps the most elusive particles in our Universe. Neutrino physics could be counted as a benchmark for various new theories in elementary particle physics and also for the better understanding of the evolution of the Universe. To complete the neutrino picture, the missing information whether it is about their mass or their nature that the neutrinos are Majorana particles could be provided by the observation of a process called neutrinoless double beta (0νββ) decay. Neutrinoless double beta decay is a hypothesised nuclear process in which two neutrons simultaneously decay into protons with no neutrino emission. In this paper we proposed a neutrino mass model based on A4 symmetry group and studied its implications to 0νββ decay. We obtained a lower limit on |Mee| for inverted hierarchy and which can be probed in 0νββ experiments like SuperNEMO and KamLAND-Zen. 


2018 ◽  
Vol 168 ◽  
pp. 04010 ◽  
Author(s):  
Anna Pollmann

Particles that carry a magnetic monopole charge are proposed by various theories which go beyond the Standard Model of particle physics. The expected mass of magnetic monopoles varies depending on the theory describing its origin, generally the monopole mass far exceeds those which can be created at accelerators. Magnetic monopoles gain kinetic energy in large scale galactic magnetic fields and, depending on their mass, can obtain relativistic velocities. IceCube is a high energy neutrino detector using the clear ice at the South Pole as a detection medium. As monopoles pass through this ice they produce optical light by a variety of mechanisms. With increasing velocity, they produce light by catalysis of baryon decay, luminescence in the ice associated with electronic excitations, indirect and direct Cherenkov light from the monopole track, and Cherenkov light from cascades induced by pair creation and photonuclear reactions. By searching for this light, current best limits for the monopole flux over a broad range of velocities was achieved using the IceCube detector. A review of these magnetic monopole searches is presented.


2018 ◽  
Vol 182 ◽  
pp. 02071
Author(s):  
Frederik Lauber

The IceCube collaboration has instrumented a cubic kilometer of ice with 5160 photo-multipliers. While mainly developed to detect Cherenkov light, any visible light can be used to detect particles within the ice. Magnetic monopoles are hypothetical particles predicted by many theories that extend the Standard model of Particle Physics. They are carriers of a single elementary magnetic charge. For this particle, different light production mechanisms dominate from direct Cherenkov light at highly relativistic velocities (> 0:76 c), indirect Cherenkov light at mildly relativistic velocities (> 0:5 c to 0:76 c), luminescence light at low relativistic velocities (≳ 0:1 c to 0:5 c), as well as catalysis of proton decay at non relativistic velocities (≲ 0:1 c). For each of this speed ranges, searches for magnetic monopoles at the IceCube experiment are either in progress or they have already set the worlds best limits on the flux of magnetic monopoles. A summary of these searches will be presented, outlining already existing results as well as methods used by the currently conducted searches.


2015 ◽  
Vol 93 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Jesús Martín Romero ◽  
Mauricio Bellini

Using the formalism of Weitzenböck induced matter theory (WIMT) we calculate the gravito-magnetic charge on a topological string, which is induced through a foliation on a five-dimensional (5D) gravito-electromagnetic vacuum defined on a 5D Ricci-flat metric, which produces symmetry breaking on an axis. We obtain the resonant result that the quantized charges are induced on the effective four-dimensional hypersurface. This quantization describes the behavior of a test gravito-electric charge in the vicinity of a point gravito-magnetic monopole, both geometrically induced from a 5D vacuum. We demonstrate how gravito-magnetic monopoles would decrease exponentially during the inflationary expansion of the universe.


1988 ◽  
Vol 7 (1) ◽  
pp. 48-54
Author(s):  
J. P. F. Sellschop

The origin of the universe and nuclear synthesis are discussed in this paper. The concept of the “Big Bang” is introduced in cosmology from observational evidence that the universe is expanding. The language of elementary particle physics is used to describe the evolution of the universe starting at a very small fraction of a second after the "Big Bang”. Various “Eras” are identified during which certain nuclear processes predominate. At a later stage the remarkable nuclear synthesis of carbon takes place, leading to the evolution of other elements. Neutrino measurements are important to validate physical theories in this field and some results of such measurements by the WITS-CSIR Schonland Research Centre are presented.


A variety of observations suggest that the Universe had a hot dense origin and that the pregalactic composition of the Universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the Universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early Universe.


1987 ◽  
Vol 117 ◽  
pp. 445-488
Author(s):  
Michael S. Turner

Recent developments in elementary particle physics have led to a renaissance in cosmology, in general, and in the study of structure formation, in particular. Already, the study of the very early (t ≤ 10−2 sec) history of the Universe has provided valuable hints as to the ‘initial data’ for the structure formation problem — the nature and origin of the primeval density inhomogeneities, the quantity and composition of matter in the Universe today, and numerous candidates for the constituents of the ubiquitious dark matter. I review the multitude of WIMP candidates for the dark matter provided by modern particle physics theories, putting them into context by briefly discussing the theories which predict them. I also review their various birth sites and birth processes in the early Universe. At present the most promising candidates seem to be a 30 or so eV neutrino, a few GeV photino, or the ‘invisible axion’ (weighing in at about 10−5 eV!), with a planck mass monopole, quark nuggets, and shadow matter as the leading ‘dark’ horse candidates. I also mention some very exotic possibilities — unstable WIMPs, cosmic strings, and even the possibility of a relic cosmological term.


Sign in / Sign up

Export Citation Format

Share Document