scholarly journals A Cosmologist's Tour through the New Particle Zoo (Candy Shop?)

1987 ◽  
Vol 117 ◽  
pp. 445-488
Author(s):  
Michael S. Turner

Recent developments in elementary particle physics have led to a renaissance in cosmology, in general, and in the study of structure formation, in particular. Already, the study of the very early (t ≤ 10−2 sec) history of the Universe has provided valuable hints as to the ‘initial data’ for the structure formation problem — the nature and origin of the primeval density inhomogeneities, the quantity and composition of matter in the Universe today, and numerous candidates for the constituents of the ubiquitious dark matter. I review the multitude of WIMP candidates for the dark matter provided by modern particle physics theories, putting them into context by briefly discussing the theories which predict them. I also review their various birth sites and birth processes in the early Universe. At present the most promising candidates seem to be a 30 or so eV neutrino, a few GeV photino, or the ‘invisible axion’ (weighing in at about 10−5 eV!), with a planck mass monopole, quark nuggets, and shadow matter as the leading ‘dark’ horse candidates. I also mention some very exotic possibilities — unstable WIMPs, cosmic strings, and even the possibility of a relic cosmological term.

1994 ◽  
Vol 159 ◽  
pp. 293-299
Author(s):  
G. Burbidge ◽  
F. Hoyle ◽  
J.V. Narlikar

The standard big bang cosmology has the universe created out of a primeval explosion that not only created matter and radiation but also spacetime itself. The big bang event itself cannot be discussed within the framework of a physical theory but the events following it are in principle considered within the scope of science. The recent developments on the frontier between particle physics and cosmology highlight the attempts to chart the history of the very early universe.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 554-563 ◽  
Author(s):  
P. SIKIVIE

The hypothesis of an 'invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order 10-5 eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.


Author(s):  
Nicholas Mee

The Cosmic Mystery Tour is a brief account of modern physics and astronomy presented in a broad historical and cultural context. The book is attractively illustrated and aimed at the general reader. Part I explores the laws of physics including general relativity, the structure of matter, quantum mechanics and the Standard Model of particle physics. It discusses recent discoveries such as gravitational waves and the project to construct LISA, a space-based gravitational wave detector, as well as unresolved issues such as the nature of dark matter. Part II begins by considering cosmology, the study of the universe as a whole and how we arrived at the theory of the Big Bang and the expanding universe. It looks at the remarkable objects within the universe such as red giants, white dwarfs, neutron stars and black holes, and considers the expected discoveries from new telescopes such as the Extremely Large Telescope in Chile, and the Event Horizon Telescope, currently aiming to image the supermassive black hole at the galactic centre. Part III considers the possibility of finding extraterrestrial life, from the speculations of science fiction authors to the ongoing search for alien civilizations known as SETI. Recent developments are discussed: space probes to the satellites of Jupiter and Saturn; the discovery of planets in other star systems; the citizen science project SETI@Home; Breakthrough Starshot, the project to develop technologies to send spacecraft to the stars. It also discusses the Fermi paradox which argues that we might actually be alone in the cosmos


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1323 ◽  
Author(s):  
G. Jordan Maclay

Understanding the hydrogen atom has been at the heart of modern physics. Exploring the symmetry of the most fundamental two body system has led to advances in atomic physics, quantum mechanics, quantum electrodynamics, and elementary particle physics. In this pedagogic review, we present an integrated treatment of the symmetries of the Schrodinger hydrogen atom, including the classical atom, the SO(4) degeneracy group, the non-invariance group or spectrum generating group SO(4,1), and the expanded group SO(4,2). After giving a brief history of these discoveries, most of which took place from 1935–1975, we focus on the physics of the hydrogen atom, providing a background discussion of the symmetries, providing explicit expressions for all of the manifestly Hermitian generators in terms of position and momenta operators in a Cartesian space, explaining the action of the generators on the basis states, and giving a unified treatment of the bound and continuum states in terms of eigenfunctions that have the same quantum numbers as the ordinary bound states. We present some new results from SO(4,2) group theory that are useful in a practical application, the computation of the first order Lamb shift in the hydrogen atom. By using SO(4,2) methods, we are able to obtain a generating function for the radiative shift for all levels. Students, non-experts, and the new generation of scientists may find the clearer, integrated presentation of the symmetries of the hydrogen atom helpful and illuminating. Experts will find new perspectives, even some surprises.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Partha Konar ◽  
Ananya Mukherjee ◽  
Abhijit Kumar Saha ◽  
Sudipta Show

Abstract We propose an appealing alternative scenario of leptogenesis assisted by dark sector which leads to the baryon asymmetry of the Universe satisfying all theoretical and experimental constraints. The dark sector carries a non minimal set up of singlet doublet fermionic dark matter extended with copies of a real singlet scalar field. A small Majorana mass term for the singlet dark fermion, in addition to the typical Dirac term, provides the more favourable dark matter of pseudo-Dirac type, capable of escaping the direct search. Such a construction also offers a formidable scope to radiative generation of active neutrino masses. In the presence of a (non)standard thermal history of the Universe, we perform the detailed dark matter phenomenology adopting the suitable benchmark scenarios, consistent with direct detection and neutrino oscillations data. Besides, we have demonstrated that the singlet scalars can go through CP-violating out of equilibrium decay, producing an ample amount of lepton asymmetry. Such an asymmetry then gets converted into the observed baryon asymmetry of the Universe through the non-perturbative sphaleron processes owing to the presence of the alternative cosmological background considered here. Unconventional thermal history of the Universe can thus aspire to lend a critical role both in the context of dark matter as well as in realizing baryogenesis.


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


2008 ◽  
Vol 4 (S255) ◽  
pp. 56-60 ◽  
Author(s):  
Katherine Freese ◽  
Douglas Spolyar ◽  
Anthony Aguirre ◽  
Peter Bodenheimer ◽  
Paolo Gondolo ◽  
...  

AbstractThe first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the the universe. This talk presents the story of these Dark Stars. We make predictions that the first stars are very massive (~800M⊙), cool (6000 K), bright (~106L⊙), long-lived (~106years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial DM fuel runs out and fusion sets in, DM annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.


2020 ◽  
Author(s):  
Eue Jin Jeong ◽  
Dennis Edmondson

Abstract Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, the magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have speculated the possibility, then neutrons must also have a magnetic monopole charge, and the Earth should show signs of having a magnetic monopole charge on a macroscopic scale. To test this hypothesis, experiments were performed to detect the magnetic monopole's effect near the equator by measuring the Earth's radial magnetic force using two balanced high strength neodymium rods magnets that successfully identified the magnetic monopole charge. From this observation, we conclude that at least the electron neutrino which is a byproduct of weak decay of the neutron must be magnetic monopole. We present mathematical expressions for the vacuum electric field based on the findings and discuss various physical consequences related to the symmetry in Maxwell's equations, the origin of quantum mechanical uncertainty, the medium for electromagnetic wave propagation in space, and the logistic distribution of the massive number of magnetic monopoles in the universe. We elaborate on how these seemingly unrelated mysteries in physics are intimately intertwined together around magnetic monopoles.


2014 ◽  
Vol 29 (37) ◽  
pp. 1440001 ◽  
Author(s):  
Jordi Casanellas ◽  
Ilídio Lopes

During the last century, with the development of modern physics in such diverse fields as thermodynamics, statistical physics, and nuclear and particle physics, the basic principles of the evolution of stars have been successfully well understood. Nowadays, a precise diagnostic of the stellar interiors is possible with the new fields of helioseismology and astroseismology. Even the measurement of solar neutrino fluxes, once a problem in particle physics, is now a powerful probe of the core of the Sun. These tools have allowed the use of stars to test new physics, in particular the properties of the hypothetical particles that constitute the dark matter (DM) of the Universe. Here we present recent results obtained using this approach.


Sign in / Sign up

Export Citation Format

Share Document