scholarly journals Southwestward growth of plateau surfaces in eastern Tibet

2020 ◽  
Author(s):  
Kai Cao ◽  
Anne Replumaz ◽  
Yuntao Tian ◽  
Laurent Husson ◽  
Guo-can Wang ◽  
...  

Abstract Both the kinematics and dynamics for topographic growth of the Tibetan Plateau remain debated despite their significance for understanding the evolution of continental lithospheric geodynamics, climate, and biodiversity in Asia. Morphometric analysis reveals the continuity of high-elevated peneplains through the Songpan-Garze-Yidun, Qiangtang and Lhasa terranes in eastern Tibet. Inverse thermal-history modeling of thermochronological data indicates slow cooling of these terranes since 80-60 Ma, 40-35 Ma and 20-5 Ma, respectively, which is interpreted as marking tectonic and topographic stabilization of the plateau surfaces. The diachronous stabilization of flat plateau surfaces and early encroachment suggests decoupling of plateau surface formation from Neogene river incision and tectonics. This southwestward piecemeal expansion of small plateaus suggests that the high-elevation, low-relief landscape of eastern Tibet has been constructed during distinct orogenic episodes prior and during the early stages of India-Asia collision. A late stage of tectonic activity during Neogene only moderately remodeled the outer rims of the plateaus and the valleys that delineate the transcurrent faults, while lower crustal channel flow only leveled the distinct plateaus to a unique elevation, thereby triggering river incision in eastern Tibet.

2021 ◽  
Author(s):  
Xiong Ou ◽  
Anne Replumaz ◽  
Peter van der Beek

<p>The Southeast Tibet is characterized by extensive low-relief high-elevation surfaces that have been interpreted as “relict surfaces”, where thermochronological data generally show old ages and very little exhumation during the India-Asia collision. Those relict surfaces are proposed either to be formed at low elevation and then uplifted and dissected by large rivers since middle Miocene, or to inherit a pre-existing low-relief landscape by or prior to the collision, as revealed by stable-isotope paleoaltimetry. Among these relict surfaces, the BaimaXueshan low-relief (<600 m), moderate-elevation (~4500 m) massif is the closest to the Eastern Himalayan Syntaxis (EHS) in the Three Rivers Region, where Salween, Mekong and Yangtze rivers flow southward parallelly and closely, showing large-scale shortening during the collision.This region represents a transition between the strongly deformed zone around EHS and the less deformed southeast Tibetan plateau margin in Yunnan and Sichuan, and is an appropriate zone to examine the relief development and the interaction between pre-existing structures, Cenozoic tectonics and river incision during the Tibetan plateau growth.</p><p>We compile and model published thermochronometric ages for BaimaXueshan massif, east of the Mekong River, to constrain its exhumation and relief history using the thermo-kinematic code Pecube. Modelling results show regional rock uplift at a rate of 0.25 km/Myr since ~10 Ma, following slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma. Estimated Mekong River incision accounts for a maximum of 30% of the total exhumation since 10 Ma. We interpret moderate exhumation of the BaimaXueshan massif since 10 Ma as a response to a regional uplift due to the continuous northward indentation of NE India in a zone around the Eastern Himalayan Syntaxis (EHS) and delimited by Longmucuo-Shuanghu suture in the north. Thus BaimaXueshan massif with significant exhumation could not be classified as “relict surface”, as proposed by previous studies and its low relief results from in part glacial “buzzsaw-like” processes at high elevation, enhancing since ~2 Ma. In contrast, modelling results for the high-relief, high-elevation Kawagebo massif to the west of the Mekong River, facing the BaimaXueshan massif, imply a similar contribution of Mekong River incision (25%) to exhumation, but much stronger local rock uplift at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. We show that the thermochronometric ages are best reproduced by local rock uplift related to late Miocene reactivation of a kinked westward-dipping thrust, striking roughly parallel to the Mekong River, with a steep shallow segment flattening out at depth. Thus, the strong differences in elevation and relief that characterize both massifs are linked to variable exhumation histories due to a strongly differing tectonic imprint. </p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


Author(s):  
Mike Searle

The Tibetan Plateau is by far the largest region of high elevation, averaging just above 5,000 metres above sea level, and the thickest crust, between 70 and 90 kilometres thick, anywhere in the world. This huge plateau region is very flat—lying in the internally drained parts of the Chang Tang in north and central Tibet, but in parts of the externally drained eastern Tibet, three or four mountain ranges larger and higher than the Alps rise above the frozen plateau. Some of the world’s largest and longest mountain ranges border the plateau, the ‘flaming mountains’ of the Tien Shan along the north-west, the Kun Lun along the north, the Longmen Shan in the east, and of course the mighty Himalaya forming the southern border of the plateau. The great trans-Himalayan mountain ranges of the Pamir and Karakoram are geologically part of the Asian plate and western Tibet but, as we have noted before, unlike Tibet, these ranges have incredibly high relief with 7- and 8-kilometre-high mountains and deeply eroded rivers and glacial valleys. The western part of the Tibetan Plateau is the highest, driest, and wildest area of Tibet. Here there is almost no rainfall and rivers that carry run-off from the bordering mountain ranges simply evaporate into saltpans or disappear underground. Rivers draining the Kun Lun flow north into the Takla Makan Desert, forming seasonal marshlands in the wet season and a dusty desert when the rivers run dry. The discovery of fossil tropical leaves, palm tree trunks, and even bones from miniature Miocene horses suggest that the climate may have been wetter in the past, but this is also dependent on the rise of the plateau. Exactly when Tibet rose to its present elevation is a matter of great debate. Nowadays the Indian Ocean monsoon winds sweep moisture-laden air over the Indian sub-continent during the summer months (late June–September). All the moisture is dumped as the summer monsoon, the torrential rains that sweep across India from south-east to north-west.


Tectonics ◽  
2018 ◽  
Vol 37 (9) ◽  
pp. 2833-2847 ◽  
Author(s):  
Fengxue Zhang ◽  
Qingju Wu ◽  
Yonghua Li ◽  
Ruiqing Zhang ◽  
Lian Sun ◽  
...  

2013 ◽  
Vol 40 (4) ◽  
pp. 360-367 ◽  
Author(s):  
Chun-Ru Liu ◽  
Gong-Ming Yin ◽  
Hui-Ping Zhang ◽  
Wen-Jun Zheng ◽  
Pierre Voinchet ◽  
...  

Abstract The Minjiang River terrace along the Longmen Shan fault zone near Wenchuan, at the eastern margin of the Tibetan Plateau, China, provides archives for tectonic activity and quaternary climate change. However, previous studies were not able to provide ages older than 100 ka due to the limitations of dating material or/and methods applied to date the fluvial sediments. In this study, we used the ESR signal of the Ti-Li center in quartz to obtain the ages of four higher terraces (T3–T6). According to the results, the terraces T3 to T6 were formed at 64±19 ka, 101±15 ka, 153±33 ka, and 423±115 ka, respectively. Combined with previous studies, these results indicate that the formations of all terraces correspond to glacial/interglacial transition periods, such as, T1-T5 being correlated to MIS2/1, MIS4/3, MIS5d/5c, and MIS6/5e respectively, while T6 probably to MIS12/11. According to these data, it is found that the average incision rate was significantly higher over the last 150 ka than that previous 100 ka (250 to 150 ka). As both tectonics and climate have affected the formation of these terraces, in addition to the overall uplifting of Tibetan Plateau, the regional uplift due to isostasy would be an additional tectonic factor in the formation of river terraces in the eastern margin of Tibetan plateau.


2007 ◽  
Vol 119 (11-12) ◽  
pp. 1462-1476 ◽  
Author(s):  
W. B. Ouimet ◽  
K. X. Whipple ◽  
L. H. Royden ◽  
Z. Sun ◽  
Z. Chen

Phytotaxa ◽  
2021 ◽  
Vol 479 (1) ◽  
pp. 1-22
Author(s):  
KIM J. KRAHN ◽  
ANJA SCHWARZ ◽  
CARLOS E. WETZEL ◽  
SERGIO COHUO-DURÁN ◽  
GERHARD DAUT ◽  
...  

Three new needle-shaped Fragilaria species from freshwater lake Apastepeque in El Salvador (Fragilaria salvadoriana sp. nov., F. maarensis sp. nov.) and subsaline lake Nam Co on the Tibetan Plateau (F. huebeneri sp. nov.) are described and compared based on light and scanning electron microscopy observations and morphometric analyses. Fragilaria salvadoriana sp. nov. is characterized by narrowly linear-lanceolate, sometimes centrally constricted valves, subcapitate to rarely capitate apices, and a distinct, dented appearing central area. Striae are composed of 2−5 occluded areolae. It can be differentiated from similar needle-shaped species by the valve outline, relatively low striae density, and shark fin-shaped spines. Characteristic of F. maarensis sp. nov. are a very narrowly lanceolate valve outline and subcapitate apices. The apical pore field is composed of 2–3 rows of poroids and acute, irregularly oriented spines are present at the junction between valve face and mantle. This taxon is clearly different from other Fragilaria species, displaying a high length-to-width ratio and a low number of areolae per stria. The Tibetan species, F. huebeneri sp. nov., forms long ribbon-like colonies linked together by spatula-shaped spines. Valves have subcapitate apices, a spindle- to needle-shaped outline and an indistinct central area. Striae are alternate and composed of 3–5 areolae per stria. Teratological forms of F. huebeneri sp. nov. were commonly observed in the sediment trap samples. Fragilaria salvadoriana sp. nov. and F. maarensis sp. nov. were found in a warm, tropical crater lake characterized by low conductivity and dissolved oxygen content, medium alkaline pH, and magnesium-calcium-bicarbonate-rich waters. Fragilaria huebeneri sp. nov. was frequent in a large, high elevation lake with increased specific conductivity, alkaline pH and sodium-bicarbonate-rich waters. The new species are compared to morphologically similar species from the genus Fragilaria Lyngbye and ecological preferences are discussed.


2021 ◽  
Author(s):  
Yiwei Zhang ◽  
Jianping Chen ◽  
Qing Wang ◽  
Chun Tan ◽  
Yongchao Li ◽  
...  

Abstract The temporary or permanent river blocking event caused by mass movement usually occurs on steep terrain. With the increase of mountain population and land use pressure and the construction of water conservancy and hydropower projects, river blocking event has gradually attracted people’s attention and understanding. The study area (Wangdalong-Gangda reach) is located in the upper reaches of the Jinsha River and the southeast edge of the Qinghai-Tibet Plateau. Affected by strong tectonic activity in the Jinsha River suture zone and the rapid uplift of the Tibetan Plateau, in the past 6000 years, there have been at least five obvious river blocking events in the reach of about 30 km in the study area. The number and density are very rare. Combined with the field investigation, indoor interpretation, laboratory tests, optically stimulated luminescence (OSL) dating, SBAS-InSAR and previous studies, multidisciplinary approaches are used to systematically summarize the analysis methods and further the understanding of one river blocking event and multiple river blocking events from difference perspectives. Especially in multiple river blocking events, we could get the wrong results, even the opposite conclusion if interaction is not considered. Through this study, the general method of analyzing the river blocking event and the problems that should be paid attention to in sampling are given, and relatively reliable historical results of river blocking events are obtained. This method has extensive applicability to the identification and analysis of river blocking events in other areas.


Sign in / Sign up

Export Citation Format

Share Document