scholarly journals Contrasting exhumation histories and relief development within the Three Rivers Region (Southeast Tibet)

Author(s):  
Xiong Ou ◽  
Anne Replumaz ◽  
Peter van der Beek

<p>The Southeast Tibet is characterized by extensive low-relief high-elevation surfaces that have been interpreted as “relict surfaces”, where thermochronological data generally show old ages and very little exhumation during the India-Asia collision. Those relict surfaces are proposed either to be formed at low elevation and then uplifted and dissected by large rivers since middle Miocene, or to inherit a pre-existing low-relief landscape by or prior to the collision, as revealed by stable-isotope paleoaltimetry. Among these relict surfaces, the BaimaXueshan low-relief (<600 m), moderate-elevation (~4500 m) massif is the closest to the Eastern Himalayan Syntaxis (EHS) in the Three Rivers Region, where Salween, Mekong and Yangtze rivers flow southward parallelly and closely, showing large-scale shortening during the collision.This region represents a transition between the strongly deformed zone around EHS and the less deformed southeast Tibetan plateau margin in Yunnan and Sichuan, and is an appropriate zone to examine the relief development and the interaction between pre-existing structures, Cenozoic tectonics and river incision during the Tibetan plateau growth.</p><p>We compile and model published thermochronometric ages for BaimaXueshan massif, east of the Mekong River, to constrain its exhumation and relief history using the thermo-kinematic code Pecube. Modelling results show regional rock uplift at a rate of 0.25 km/Myr since ~10 Ma, following slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma. Estimated Mekong River incision accounts for a maximum of 30% of the total exhumation since 10 Ma. We interpret moderate exhumation of the BaimaXueshan massif since 10 Ma as a response to a regional uplift due to the continuous northward indentation of NE India in a zone around the Eastern Himalayan Syntaxis (EHS) and delimited by Longmucuo-Shuanghu suture in the north. Thus BaimaXueshan massif with significant exhumation could not be classified as “relict surface”, as proposed by previous studies and its low relief results from in part glacial “buzzsaw-like” processes at high elevation, enhancing since ~2 Ma. In contrast, modelling results for the high-relief, high-elevation Kawagebo massif to the west of the Mekong River, facing the BaimaXueshan massif, imply a similar contribution of Mekong River incision (25%) to exhumation, but much stronger local rock uplift at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. We show that the thermochronometric ages are best reproduced by local rock uplift related to late Miocene reactivation of a kinked westward-dipping thrust, striking roughly parallel to the Mekong River, with a steep shallow segment flattening out at depth. Thus, the strong differences in elevation and relief that characterize both massifs are linked to variable exhumation histories due to a strongly differing tectonic imprint. </p>

2020 ◽  
Author(s):  
Xiong Ou ◽  
Anne Replumaz ◽  
Peter van der Beek

Abstract. The Three Rivers Region in Southeast Tibet represents a transition between the strongly deformed zone around Eastern Himalayan Syntaxis and the less deformed southeast Tibetan plateau margin in Yunnan and Sichuan. In this study, we compile and model published thermochronologic ages for two massifs facing each other across the Mekong River in the core of the Three Rivers Region, by using the thermo-kinematic code Pecube to constrain their exhumation and relief development history. Modelling results for the low-relief, mean-elevation BaimaXueshan massif, east of the Mekong River, suggest regional rock uplift at a rate of 0.25 km/Myr since ~ 10 Ma, following slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma. River incision accounts for only 15 % of the total exhumation in the BaimaXueshan. Exhumation since ~ 10 Ma is significantly higher (2.5 km) than that estimated (~ 0.23 km) for the most emblematic low-relief or relict surfaces of Eastern Tibet, which are characterized by apatite (U-Th)/He ages older than the collision age (> 50 Ma). We conclude that the BaimaXueshan massif, which shows younger ages (


Solid Earth ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 563-580
Author(s):  
Xiong Ou ◽  
Anne Replumaz ◽  
Peter van der Beek

Abstract. The Three Rivers Region in south-east Tibet represents a transition between the strongly deformed zone around the Eastern Himalayan Syntaxis (EHS) and the less deformed south-east Tibetan Plateau margin in Yunnan and Sichuan. In this study, we compile and model published thermochronometric ages for two massifs facing each other across the Mekong River in the core of the Three Rivers Region (TRR), using the thermo-kinematic code Pecube to constrain their exhumation and relief history. Modelling results for the low-relief (< 600 m), moderate-elevation (∼ 4500 m) Baima Xueshan massif, east of the Mekong River, suggest regional rock uplift at a rate of 0.25 km/Myr since ∼ 10 Ma, following slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma. Estimated Mekong River incision accounts for 30 % of the total exhumation since 10 Ma. We interpret exhumation of the massif as a response to regional uplift around the EHS and conclude that the low relief of the massif was acquired at high elevation (> 4500 m), probably in part due to glacial “buzzsaw-like” processes active at such high elevation and particularly efficient during Quaternary glaciations. Exhumation of the Baima Xueshan is significantly higher (2.5 km since ∼ 10 Ma) than that estimated for the most emblematic low-relief “relict” surfaces of eastern Tibet, where apatite (U–Th) / He (AHe) ages > 50 Ma imply only a few hundreds of metres of exhumation since the onset of the India–Asia collision. The low-relief Baima Xueshan massif, with its younger AHe ages (< 50 Ma) that record significant rock uplift and exhumation, thus cannot be classified as a relict surface. Modelling results for the high-relief, high-elevation Kawagebo massif, to the west of the Mekong, imply a similar contribution of Mekong River incision (25 %) to exhumation but much stronger local rock uplift at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. We show that the thermochronometric ages are best reproduced by a model of rock uplift on a kinked westward-dipping thrust striking roughly parallel to the Mekong River, with a steep shallow segment flattening out at depth. Thus, the strong differences in elevation and relief of two massifs are linked to variable exhumation histories due to strongly differing tectonic imprint.


2020 ◽  
Author(s):  
Kai Cao ◽  
Anne Replumaz ◽  
Yuntao Tian ◽  
Laurent Husson ◽  
Guo-can Wang ◽  
...  

Abstract Both the kinematics and dynamics for topographic growth of the Tibetan Plateau remain debated despite their significance for understanding the evolution of continental lithospheric geodynamics, climate, and biodiversity in Asia. Morphometric analysis reveals the continuity of high-elevated peneplains through the Songpan-Garze-Yidun, Qiangtang and Lhasa terranes in eastern Tibet. Inverse thermal-history modeling of thermochronological data indicates slow cooling of these terranes since 80-60 Ma, 40-35 Ma and 20-5 Ma, respectively, which is interpreted as marking tectonic and topographic stabilization of the plateau surfaces. The diachronous stabilization of flat plateau surfaces and early encroachment suggests decoupling of plateau surface formation from Neogene river incision and tectonics. This southwestward piecemeal expansion of small plateaus suggests that the high-elevation, low-relief landscape of eastern Tibet has been constructed during distinct orogenic episodes prior and during the early stages of India-Asia collision. A late stage of tectonic activity during Neogene only moderately remodeled the outer rims of the plateaus and the valleys that delineate the transcurrent faults, while lower crustal channel flow only leveled the distinct plateaus to a unique elevation, thereby triggering river incision in eastern Tibet.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Jiming Jin ◽  
Shihua Lu ◽  
Suosuo Li ◽  
Norman L. Miller

Observational data show that the remotely sensed leaf area index (LAI) has a significant downward trend over the east Tibetan Plateau (TP), while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM) version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers) Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.


2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


2017 ◽  
Vol 30 (15) ◽  
pp. 5791-5803 ◽  
Author(s):  
Yunying Li ◽  
Minghua Zhang

Cumulus (Cu) from shallow convection is one of the dominant cloud types over the Tibetan Plateau (TP) in the summer according to CloudSat– CALIPSO observations. Its thermodynamic effects on the atmospheric environment and impacts on the large-scale atmospheric circulation are studied in this paper using the Community Atmospheric Model, version 5.3 (CAM5.3). It is found that the model can reasonably simulate the unique distribution of diabatic heating and Cu over the TP. Shallow convection provides the dominant diabatic heating and drying to the lower and middle atmosphere over the TP. A sensitivity experiment indicates that without Cu over the TP, large-scale condensation and stratiform clouds would increase dramatically, which induces enhanced low-level wind and moisture convergence toward the TP, resulting in significantly enhanced monsoon circulation with remote impact on the areas far beyond the TP. Cu therefore acts as a safety valve to modulate the atmospheric environment that prevents the formation of superclusters of stratiform clouds and precipitation over the TP.


Author(s):  
Mike Searle

The Tibetan Plateau is by far the largest region of high elevation, averaging just above 5,000 metres above sea level, and the thickest crust, between 70 and 90 kilometres thick, anywhere in the world. This huge plateau region is very flat—lying in the internally drained parts of the Chang Tang in north and central Tibet, but in parts of the externally drained eastern Tibet, three or four mountain ranges larger and higher than the Alps rise above the frozen plateau. Some of the world’s largest and longest mountain ranges border the plateau, the ‘flaming mountains’ of the Tien Shan along the north-west, the Kun Lun along the north, the Longmen Shan in the east, and of course the mighty Himalaya forming the southern border of the plateau. The great trans-Himalayan mountain ranges of the Pamir and Karakoram are geologically part of the Asian plate and western Tibet but, as we have noted before, unlike Tibet, these ranges have incredibly high relief with 7- and 8-kilometre-high mountains and deeply eroded rivers and glacial valleys. The western part of the Tibetan Plateau is the highest, driest, and wildest area of Tibet. Here there is almost no rainfall and rivers that carry run-off from the bordering mountain ranges simply evaporate into saltpans or disappear underground. Rivers draining the Kun Lun flow north into the Takla Makan Desert, forming seasonal marshlands in the wet season and a dusty desert when the rivers run dry. The discovery of fossil tropical leaves, palm tree trunks, and even bones from miniature Miocene horses suggest that the climate may have been wetter in the past, but this is also dependent on the rise of the plateau. Exactly when Tibet rose to its present elevation is a matter of great debate. Nowadays the Indian Ocean monsoon winds sweep moisture-laden air over the Indian sub-continent during the summer months (late June–September). All the moisture is dumped as the summer monsoon, the torrential rains that sweep across India from south-east to north-west.


Sign in / Sign up

Export Citation Format

Share Document