scholarly journals Self-aligned double injection-function contact mitigating short channel effects in sub-micron channels of solution processed indium gallium zinc oxide

Author(s):  
Gil Sheleg ◽  
Nir Tessler

Abstract We propose and demonstrate self-aligned Double Injection Function Thin Film Transistor (DIF-TFT) architecture that mitigates short channel effects in 200nm channel on a non-scaled insulator (100nm SiO2). In this conceptual design, a combination of an ohmic-like injection contact and a high injection-barrier metal allows maintaining the high ON currents while suppressing the drain-induced barrier lowering. Using an industrial 2D device simulator (Sentaurus), we propose two methods to realize the DIF concept and we use one of them to experimentally demonstrate a DIF-TFT based on solution processed IGZO. Using molybdenum as the ohmic contact and platinum as the high injection barrier, we compare three transistor’s source-contacts: ohmic, Schottky, and double injection function. The fabricated DIF-TFT exhibits saturation at sub 1V drain bias with only about a factor of 2 loss in ON current compared to the ohmic contact.

1998 ◽  
Vol 09 (03) ◽  
pp. 703-723 ◽  
Author(s):  
BENJAMIN IÑIGUEZ ◽  
TOR A. FJELDLY ◽  
MICHAEL S. SHUR

We review recent physics-based, analytical DC models for amorphous silicon (a-Si), polysilicon (poly-Si), and organic thin film transistors (TFTs), developed for the design of novel ultra high-resolution, large area displays using advanced short-channel TFTs. In particular, we emphasize the modeling issues related to the main short-channel effects, such as self-heating (a-Si TFTs) and kink effect (a-Si and poly-Si TFTs), which are present in modern TFTs. The models have been proved to accurately reproduce the DC characteristics of a-Si:H with gate lengths down to 4 μm and poly-Si TFTs with gate lengths down to 2 μm. Because the scalability of the models and the use of continuous expressions for describing the characteristics in all operating regimes, the models are suitable for implementation in circuit simulators such as SPICE.


1993 ◽  
Vol 3 (9) ◽  
pp. 1719-1728
Author(s):  
P. Dollfus ◽  
P. Hesto ◽  
S. Galdin ◽  
C. Brisset

2007 ◽  
Vol 54 (8) ◽  
pp. 1943-1952 ◽  
Author(s):  
A. Tsormpatzoglou ◽  
C.A. Dimitriadis ◽  
R. Clerc ◽  
Q. Rafhay ◽  
G. Pananakakis ◽  
...  

1989 ◽  
Vol 36 (3) ◽  
pp. 522-528 ◽  
Author(s):  
S. Veeraraghavan ◽  
J.G. Fossum

Sign in / Sign up

Export Citation Format

Share Document