scholarly journals Use of Novel Lab-Assays to Examine the Effect of Pyrethroid-Treated Bed Nets on Blood Feeding Success and Longevity of Highly Insecticide-Resistant Anopheles Gambiae S.I. Mosquitoes.

Author(s):  
Priscille Barreaux ◽  
Jacob C. Koella ◽  
Raphael N’Guessan ◽  
Matthew B. Thomas

Abstract Background: There is a pressing need to improve understanding of how insecticide resistance affects the functional performance of Insecticide Treated Nets (ITNs). Standard WHO insecticide resistance monitoring assays are designed for resistance surveillance and do not necessarily provide insight into how different frequencies, mechanisms or intensities of resistance affect the ability of ITNs to reduce malaria transmission. Methods: The current study presents some novel laboratory-based assays that attempt to better simulate realistic exposure of mosquitoes to ITNs and to quantify impact of exposure not only on instantaneous mortality, but also blood feeding and longevity, two traits that are central to transmission. The assays evaluated the performance of a standard ITN (Permanet® 2.0), a ‘next generation’ combination ITN that includes a resistance breaking synergist (Permanet® 3.0), and an untreated net (UTN), against field-derived Anopheles gambiae s.l. mosquitoes from Côte d’Ivoire exhibiting 1500-fold pyrethroid resistance. Results: The study revealed that a standard ITN induced negligible instantaneous mortality against the resistant mosquitoes, whereas the resistance breaking net caused high mortality and a reduction in blood feeding. However, the ITNs still impacted long term survival relative to the UTN. The impact on longevity depended on feeding status, with blood-fed mosquitoes living longer than unfed mosquitoes following ITN exposure. The ITNs also reduced the blood feeding success, the time spent on the net, and blood-feeding duration, relative to the untreated net. Conclusion: Thus, while the standard ITN did not have as substantial instantaneous impact as the resistance breaking net, it still had significant impacts on traits important for transmission. These results highlight the benefit of improved bioefficacy assays that allow for realistic exposure and consider sub- or pre-lethal effects to help assess the functional significance of insecticide resistance.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nelson Grisales ◽  
Rosemary S. Lees ◽  
James Maas ◽  
John C. Morgan ◽  
Dimitri W. Wangrawa ◽  
...  

Abstract Background The efficacy of insecticide-treated nets (ITNs) containing the insect growth regulator pyriproxyfen (PPF) and pyrethroid insecticides (PPF-ITNs) is being assessed in clinical trials to determine whether they provide greater protection from malaria than standard pyrethroid-treated ITNs in areas where mosquitoes are resistant to pyrethroids. Understanding the entomological mode of action of this new ITN class will aide interpretation of the results from these trials. Methods Anopheles gambiae sensu lato (s.l.) mosquitoes from a susceptible laboratory strain were exposed to PPF-treated netting 24 h, 6 h, and immediately prior to, or 24 h post blood feeding, and the impact on fecundity, fertility and longevity recorded. Pyrethroid-resistant populations were exposed to nets containing permethrin and PPF (PPF-ITNs) in cone bioassays and daily mortality recorded. Mosquitoes were also collected from inside houses pre- and post-distribution of PPF-ITNs in a clinical trial conduced in Burkina Faso; female An. gambiae s.l. were then assessed for fecundity and fertility. Results PPF exposure reduced the median adult lifespan of insecticide-susceptible mosquitoes by 4 to 5 days in all exposure times (p < 0.05) other than 6 h pre-blood meal and resulted in almost complete lifelong sterilization. The longevity of pyrethroid-resistant mosquitoes was also reduced by at least 5 days after exposure to PPF-ITNs compared to untreated nets, but was unaffected by exposure to standard pyrethroid only ITNs. A total of 386 blood-fed or gravid An. gambiae s.l. females were collected from five villages between 1 and 12 months before distribution of PPF-ITNs. Of these mosquitoes, 75% laid eggs and the remaining 25% appeared to have normal ovaries upon dissection. In contrast, only 8.6% of the 631 blood-fed or gravid An. gambiae s.l. collected post PPF-ITN distribution successfully oviposited; 276 (43.7%) did not oviposit but had apparently normal ovaries upon dissection, and 301 (47.7%) did not oviposit and had abnormal eggs upon dissection. Egg numbers were also significantly lower (average of 138/female prior distribution vs 85 post distribution, p < 0.05). Conclusion Exposure to a mixture of PPF and pyrethroids on netting shortens the lifespan of mosquitoes and reduces reproductive output. Sterilization of vectors lasted at least one year under operational conditions. These findings suggest a longer effective lifespan of PPF-pyrethroid nets than reported previously.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Welbeck A. Oumbouke ◽  
Mark Rowland ◽  
Alphonsine A. Koffi ◽  
Ludovic P. A. Alou ◽  
Soromane Camara ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) are the primary method of malaria prevention. However, the widespread resistance to pyrethroids among major malaria vector species represents a significant threat to the continued efficacy of pyrethroid LLIN. Piperonyl butoxide (PBO) is a synergist that inhibits the activity of metabolic enzymes of the cytochrome P450 family known to detoxify insecticides including pyrethroids. Synergist LLIN incorporating PBO and a pyrethroid may provide improved control compared to pyrethroid-only LLIN. Methods The efficacy of VEERALIN® LN (VKA polymers Pvt Ltd, India), an alpha-cypermethrin PBO synergist net was evaluated in experimental huts in M’bé, central Côte d’Ivoire against wild pyrethroid resistant Anopheles gambiae s.s. Comparison was made with a standard alpha-cypermethrin-treated net (MAGNet® LN, VKA polymers Pvt Ltd, India). Nets were tested unwashed and after 20 standardized washes. Results VEERALIN® LN demonstrated improved efficacy compared to MAGNet® LN against wild free-flying pyrethroid-resistant An. gambiae s.s. Before washing, VEERALIN® LN produced mortality of An. gambiae s.s. (51%) significantly higher than the standard pyrethroid-only net (29%) (P < 0.0001). Although there was a significant reduction in mortality with both LLINs after 20 washes, VEERALIN® LN remained superior in efficacy to MAGNet® LN (38 vs 17%) (P < 0.0001). Blood-feeding was significantly inhibited with both types of insecticide-treated nets relative to the untreated control net (P < 0.0001). Unwashed VEERALIN® LN induced significantly higher blood-feeding inhibition of An. gambiae s.s. (62.6%) compared to MAGNet® LN (35.4%) (P < 0.001). The difference persisted after washing, as there was no indication that either LLIN lost protection against biting or blood-feeding. The level of personal protection derived from the use of VEERALIN® LN was high (87%) compared to MAGNet® LN (66–69%) whether unwashed or washed. The AI content of VEERALIN® LN after 20 washes decreased from 6.75 to 6.03 g/kg for alpha-cypermethrin and from 2.95 to 2.64 g/kg for PBO, corresponding to an overall retention of 89% for each compound. Conclusions The addition of the synergist PBO to pyrethroid net greatly improved protection and control of pyrethroid-resistant An. gambiae s.s. The pyrethroid-PBO VEERALIN® LN has the potential to reduce transmission in areas compromised by pyrethroid resistance.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Angela Hughes ◽  
Natalie Lissenden ◽  
Mafalda Viana ◽  
Kobié Hyacinthe Toé ◽  
Hilary Ranson

Abstract Background The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance. Bioassays assessing 24-hour mortality post-LLIN exposure have established that resistance to the concentration of pyrethroids used in LLINs is widespread. However, although mosquitoes may no longer be rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against pyrethroid-resistant populations. Burkina Faso is one of a number of countries with very high malaria burdens and pyrethroid-resistant vectors, where progress in controlling this disease has stagnated. We measured the impact of LLIN exposure on mosquito longevity in an area of the country with intense pyrethroid resistance to establish whether pyrethroid exposure was still shortening mosquito lifespan in this setting. Methods We quantified the immediate and delayed mortality effects of LLIN exposure using standard laboratory WHO cone tests, tube bioassays and experimental hut trials on Anopheles gambiae populations originating from the Cascades region of Burkina Faso using survival analysis and a Bayesian state-space model. Results Following single and multiple exposures to a PermaNet 2.0 LLIN only one of the four mosquito populations tested showed evidence of delayed mortality. No delayed mortality was seen in experimental hut studies using LLINs. A delayed mortality effect was only observed in WHO tube bioassays when deltamethrin concentration was increased above the standard diagnostic dose. Conclusions As mosquito pyrethroid-resistance increases in intensity, delayed effects from LLIN exposure are substantially reduced or absent. Given the rapid increase in resistance occurring in malaria vectors across Africa it is important to determine whether the failure of LLINs to shorten mosquito lifespan is now a widespread phenomenon as this will have important implications for the future of this pivotal malaria control tool.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 211 ◽  
Author(s):  
Emmanuel Elanga-Ndille ◽  
Lynda Nouage ◽  
Achille Binyang ◽  
Tatiane Assatse ◽  
Billy Tene-Fossog ◽  
...  

D7 family proteins are among the most expressed salivary proteins in mosquitoes. They facilitate blood meal intake of the mosquito by scavenging host amines that induce vasoconstriction, platelet aggregation and pain. Despite this important role, little information is available on the impact of insecticide resistance on the regulation of D7 proteins and consequently on the blood feeding success. In this study, real-time quantitative polymerase chain reaction (qPCR) analyses were performed to investigate how pyrethroid resistance could influence the expression of genes encoding D7 family proteins in Anopheles gambiae and Anopheles funestus s.s. mosquitoes from Elon in the Central Cameroon. Out of 328 collected mosquitoes, 256 were identified as An. funestus sl and 64 as An. gambiae sl. Within the An. funestus group, An. funestus s.s. was the most abundant species (95.95%) with An. rivulorum, An. parensis and An. rivulorum-like also detected. All An. gambiae s.l mosquitoes were identified as An. gambiae. High levels of pyrethroid resistance were observed in both An. gambiae and An. funestus mosquitoes. RT-qPCR analyses revealed a significant overexpression of two genes encoding D7 proteins, D7r3 and D7r4, in pyrethroids resistant An. funestus. However, no association was observed between the polymorphism of these genes and their overexpression. In contrast, overall D7 salivary genes were under-expressed in pyrethroid resistant An. gambiae. This study provides preliminary evidences that pyrethroid resistance could influence blood meal intake through over-expression of D7 proteins although future studies will help establishing potential impact on vectorial capacity.


2021 ◽  
Author(s):  
Nelson Grisales ◽  
Rosemary S Lees ◽  
James Maas ◽  
John C Morgan ◽  
Dimitri W Wangrawa ◽  
...  

Abstract Background The efficacy of insecticide treated nets (ITNs) containing the insect growth regulator pyriproxyfen (PPF) and pyrethroid insecticides (PPF-ITNs) is being assessed in clinical trials to determine whether they provide greater protection from malaria than standard pyrethroid-treated ITNs in areas where mosquitoes are resistant to pyrethroids. Understanding the entomological mode of action of this new ITN class will aide interpretation of the results from these trials. Methods Anopheles gambiae s.l. mosquitoes from a susceptible laboratory strain were exposed to PPF-treated netting 24 h, 6 h, and immediately prior to, or 24 h post blood feeding, and the impact on fecundity, fertility and longevity recorded. Pyrethroid-resistant populations were exposed to nets containing permethrin and PPF (PPF-ITNs) in cone bioassays and daily mortality recorded. Mosquitoes were also collected from inside houses pre- and post-distribution of PPF-ITNs in a clinical trial conduced in Burkina Faso; female An. gambiae s.l. were then assessed for fecundity and fertility. Results PPF exposure reduced the median adult lifespan of insecticide-susceptible mosquitoes by 4 to 5 days in all exposure times (p < 0.05) other than 6 h pre-bloodmeal and resulted almost complete lifelong sterilisation. The longevity of pyrethroid-resistant mosquitoes was also reduced by at least 5 days after exposure to PPF- ITNs compared to untreated nets but was unaffected by exposure to standard pyrethroid only ITNs. A total of 386 blood-fed or gravid An. gambiae s.l. females were collected from five villages between 1 and 12 months before distribution of PPF-ITNs. Of these mosquitoes, 75 % laid eggs and the remaining 25 % appeared to have normal ovaries upon dissection. In contrast, only 8.6 % of the 631 blood-fed or gravid An. gambiae s.l. collected post PPF-ITN distribution successfully oviposited; 276 (43.7%) did not oviposit but had apparently normal ovaries upon dissection, and 301 (47.7%) did not oviposit and had abnormal eggs upon dissection. Egg numbers were also significantly lower (average of 138/female prior distribution vs 85 post distribution, p < 0.05). Conclusion Exposure to a mixture of PPF and pyrethroids on netting shortens the lifespan mosquitoes and reduces reproductive output. Sterilisation of vectors lasted at least one year under operational conditions. Our findings suggest a longer effective lifespan of PPF-pyrethroid nets than reported previously.


2017 ◽  
Vol 114 (52) ◽  
pp. E11267-E11275 ◽  
Author(s):  
Hmooda Toto Kafy ◽  
Bashir Adam Ismail ◽  
Abraham Peter Mnzava ◽  
Jonathan Lines ◽  
Mogahid Shiekh Eldin Abdin ◽  
...  

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Daibin Zhong ◽  
Guofa Zhou ◽  
Xiaoming Wang ◽  
...  

Abstract The directional selection for insecticide resistance due to indiscriminate use of insecticides in public health and agricultural system favors an increase in the frequency of insecticide-resistant alleles in the natural populations. Similarly, removal of selection pressure generally leads to decay in resistance. Past investigations on the emergence of insecticide resistance in mosquitoes mostly relied on field survey of resistance in vector populations that typically had a complex history of exposure to various public health and agricultural pest control insecticides in nature, and thus the effect of specific insecticides on rate of resistance emergency or resistance decay rate is not known. This study examined the phenotypic, genotypic, and biochemical changes that had occurred during the process of selection for pyrethroid resistance in Anopheles gambiae, the most important malaria vector in Africa. In parallel, we also examined these changes in resistant populations when there is no selection pressure applied. Through repeated deltamethrin selection in adult mosquitoes from a field population collected in western Kenya for 12 generations, we obtained three independent and highly pyrethroid-resistant An. gambiae populations. Three susceptible populations from the same parental population were generated by removing selection pressure. These two lines of mosquito populations differed significantly in monooxygenase and beta-esterase activities, but not in Vgsc gene mutation frequency, suggesting metabolic detoxification mechanism plays a major role in generating moderate-intensity resistance or high-intensity resistance. Pre-exposure to the synergist piperonyl butoxide restored the susceptibility to insecticide among the highly resistant mosquitoes, confirming the role of monooxygenases in pyrethroid resistance. The rate of resistance decay to become fully susceptible from moderate-intensity resistance took 15 generations, supporting at least 2-years interval is needed when the rotational use of insecticides with different modes of action is considered for resistance management.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Welbeck A. Oumbouke ◽  
Patricia Pignatelli ◽  
Antoine M. G. Barreaux ◽  
Innocent Z. Tia ◽  
Alphonsine A. Koffi ◽  
...  

Abstract Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d’Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An. gambiae s.s. and An. coluzzii was detected across villages, with dose–response assays demonstrating extremely high resistance intensity to the pyrethroid deltamethrin (> 1,500-fold), and mortality following exposure to pyrethroid-treated bednets was low (< 30% mortality in cone bioassays). The 1014F kdr mutation was almost fixed (≥ 90%) in all villages but the 1575Y kdr-amplifying mutation was relatively rare (< 15%). The carbamate and organophosphate resistance-associated Ace-1 G119S mutation was also detected at moderate frequencies (22–43%). Transcriptome analysis identified overexpression of P450 genes known to confer pyrethroid resistance (Cyp9K1, Cyp6P3, and Cyp6M2), and also a carboxylesterase (COEAE1F) as major candidates. Cyp6P3 expression was high but variable (up to 33-fold) and correlated positively with deltamethrin resistance intensity across villages (r2 = 0.78, P = 0.02). Tools and strategies to mitigate the extreme and multiple resistance provided by these mechanisms are required in this area to avoid future control failures.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 143 ◽  
Author(s):  
Benjamin D. Menze ◽  
Mersimine F. Kouamo ◽  
Murielle J. Wondji ◽  
Williams Tchapga ◽  
Micareme Tchoupo ◽  
...  

Growing insecticide resistance in malaria vectors is threatening the effectiveness of insecticide-based interventions, including Long Lasting Insecticidal Nets (LLINs). However, the impact of metabolic resistance on the effectiveness of these tools remains poorly characterized. Using experimental hut trials and genotyping of a glutathione S-transferase resistance marker (L119F-GSTe2), we established that GST-mediated resistance is reducing the efficacy of LLINs against Anopheles funestus. Hut trials performed in Cameroon revealed that Piperonyl butoxide (PBO)-based nets induced a significantly higher mortality against pyrethroid resistant An. funestus than pyrethroid-only nets. Blood feeding rate and deterrence were significantly higher in all LLINs than control. Genotyping the L119F-GSTe2 mutation revealed that, for permethrin-based nets, 119F-GSTe2 resistant mosquitoes have a greater ability to blood feed than susceptible while the opposite effect is observed for deltamethrin-based nets. For Olyset Plus, a significant association with exophily was observed in resistant mosquitoes (OR = 11.7; p < 0.01). Furthermore, GSTe2-resistant mosquitoes (cone assays) significantly survived with PermaNet 2.0 (OR = 2.1; p < 0.01) and PermaNet 3.0 (side) (OR = 30.1; p < 0.001) but not for Olyset Plus. This study shows that the efficacy of PBO-based nets (e.g., blood feeding inhibition) against pyrethroid resistant malaria vectors could be impacted by other mechanisms including GST-mediated metabolic resistance not affected by the synergistic action of PBO. Mosaic LLINs incorporating a GST inhibitor (diethyl maleate) could help improve their efficacy in areas of GST-mediated resistance.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Kobié H. Toé ◽  
Frank Mechan ◽  
Julie-Anne A. Tangena ◽  
Marion Morris ◽  
Joanna Solino ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) treated with pyrethroids are the foundation of malaria control in sub-Saharan Africa. Rising pyrethroid resistance in vectors, however, has driven the development of alternative net formulations. Here the durability of polyethylene nets with a novel combination of a pyrethroid, permethrin, and the insect juvenile hormone mimic, pyriproxyfen (PPF), compared to a standard permethrin LLIN, was assessed in rural Burkina Faso. Methods A compound-randomized controlled trial was completed in two villages. In one village 326 of the PPF-permethrin nets (Olyset Duo) and 327 standard LLINs (Olyset) were distributed to assess bioefficacy. In a second village, 170 PPF-permethrin nets and 376 LLINs were distributed to assess survivorship. Nets were followed at 6-monthly intervals for 3 years. Bioefficacy was assessed by exposing permethrin-susceptible and resistant Anopheles gambiae sensu lato mosquito strains to standard World Health Organization (WHO) cone and tunnel tests with impacts on fertility measured in the resistant strain. Insecticide content was measured using high-performance liquid chromatography. LLIN survivorship was recorded with a questionnaire and assessed by comparing the physical integrity using the proportionate hole index (pHI). Results The PPF-permethrin net met WHO bioefficacy criteria (≥ 80% mortality or ≥ 95% knockdown) for the first 18 months, compared to 6 months for the standard LLIN. Mean mosquito mortality for PPF-permethrin nets, across all time points, was 8.6% (CI 2.6–14.6%) higher than the standard LLIN. Fertility rates were reduced after PPF-permethrin net exposure at 1-month post distribution, but not later. Permethrin content of both types of nets remained within the target range of 20 g/kg ± 25% for 242/248 nets tested. The pyriproxyfen content of PPF-permethrin nets declined by 54%, from 10.4 g/kg (CI 10.2–10.6) to 4.7 g/kg (CI 3.5–6.0, p < 0.001) over 36 months. Net survivorship was poor, with only 13% of PPF-permethrin nets and 12% of LLINs still present in the original household after 36 months. There was no difference in the fabric integrity or survivorship between the two net types. Conclusion The PPF-permethrin net, Olyset Duo, met or exceeded the performance of the WHO-recommended standard LLIN (Olyset) in the current study but both net types failed the 3-year WHO bioefficacy criteria.


Sign in / Sign up

Export Citation Format

Share Document