scholarly journals Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Daibin Zhong ◽  
Guofa Zhou ◽  
Xiaoming Wang ◽  
...  

Abstract The directional selection for insecticide resistance due to indiscriminate use of insecticides in public health and agricultural system favors an increase in the frequency of insecticide-resistant alleles in the natural populations. Similarly, removal of selection pressure generally leads to decay in resistance. Past investigations on the emergence of insecticide resistance in mosquitoes mostly relied on field survey of resistance in vector populations that typically had a complex history of exposure to various public health and agricultural pest control insecticides in nature, and thus the effect of specific insecticides on rate of resistance emergency or resistance decay rate is not known. This study examined the phenotypic, genotypic, and biochemical changes that had occurred during the process of selection for pyrethroid resistance in Anopheles gambiae, the most important malaria vector in Africa. In parallel, we also examined these changes in resistant populations when there is no selection pressure applied. Through repeated deltamethrin selection in adult mosquitoes from a field population collected in western Kenya for 12 generations, we obtained three independent and highly pyrethroid-resistant An. gambiae populations. Three susceptible populations from the same parental population were generated by removing selection pressure. These two lines of mosquito populations differed significantly in monooxygenase and beta-esterase activities, but not in Vgsc gene mutation frequency, suggesting metabolic detoxification mechanism plays a major role in generating moderate-intensity resistance or high-intensity resistance. Pre-exposure to the synergist piperonyl butoxide restored the susceptibility to insecticide among the highly resistant mosquitoes, confirming the role of monooxygenases in pyrethroid resistance. The rate of resistance decay to become fully susceptible from moderate-intensity resistance took 15 generations, supporting at least 2-years interval is needed when the rotational use of insecticides with different modes of action is considered for resistance management.

2019 ◽  
Author(s):  
Adriana Adolfi ◽  
Beth Poulton ◽  
Amalia Anthousi ◽  
Stephanie Macilwee ◽  
Hilary Ranson ◽  
...  

ABSTRACTResistance in Anopheles gambiae to members of all four major classes (pyrethroids, carbamates, organochlorines and organophosphates) of public health insecticides limits effective control of malaria transmission in Africa. Increased expression of detoxifying enzymes has been associated with resistance, but direct functional validation in An. gambiae has been lacking. Here we perform transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes conferred by increased expression of the three genes - Cyp6m2, Cyp6p3 and Gste2 - most often found upregulated in resistant An. gambiae. We report the first evidence in An. gambiae that organophosphate and organochlorine resistance is conferred by overexpression of GSTE2 in a broad tissue profile. Pyrethroid and carbamate resistance is bestowed by similar Cyp6p3 overexpression, and Cyp6m2 confers only pyrethroid resistance when overexpressed in the same tissues. Conversely, such Cyp6m2 overexpression increases susceptibility to the organophosphate malathion, presumably due to conversion to a more toxic metabolite. No resistant phenotypes are conferred when either Cyp6 gene overexpression is restricted to the midgut or oenocytes, answering long standing questions related to the importance of these tissues in resistance to contact insecticides. Validation of genes conferring resistance provides markers to guide control strategies, and the observed negative cross-resistance due to Cyp6m2 gives credence to proposed dual insecticide strategies to overcome pyrethroid resistance. These trasnsgenic An. gambiae resistant lines are being used to test potential liabilities in new active compounds early in development.SIGNIFICANCE STATEMENTInsecticide resistance in Anopheles gambiae mosquitoes can derail malaria control programs, and to overcome it we need to discover the underlying molecular basis. Here, for the first time, we characterise three genes most often associated with insecticide resistance directly by their overproduction in genetically modified An. gambiae. We show that overexpression of each gene confers resistance to representatives of at least one insecticide class and, taken together, the three genes provide cross-resistance to all four major insecticide classes currently used in public health. These data validate the candidate genes as markers to monitor the spread of resistance in mosquito populations. The modified mosquitoes produced are also valuable tools to pre-screen new insecticides for potential liabilities to existing resistance mechanisms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Welbeck A. Oumbouke ◽  
Patricia Pignatelli ◽  
Antoine M. G. Barreaux ◽  
Innocent Z. Tia ◽  
Alphonsine A. Koffi ◽  
...  

Abstract Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d’Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An. gambiae s.s. and An. coluzzii was detected across villages, with dose–response assays demonstrating extremely high resistance intensity to the pyrethroid deltamethrin (> 1,500-fold), and mortality following exposure to pyrethroid-treated bednets was low (< 30% mortality in cone bioassays). The 1014F kdr mutation was almost fixed (≥ 90%) in all villages but the 1575Y kdr-amplifying mutation was relatively rare (< 15%). The carbamate and organophosphate resistance-associated Ace-1 G119S mutation was also detected at moderate frequencies (22–43%). Transcriptome analysis identified overexpression of P450 genes known to confer pyrethroid resistance (Cyp9K1, Cyp6P3, and Cyp6M2), and also a carboxylesterase (COEAE1F) as major candidates. Cyp6P3 expression was high but variable (up to 33-fold) and correlated positively with deltamethrin resistance intensity across villages (r2 = 0.78, P = 0.02). Tools and strategies to mitigate the extreme and multiple resistance provided by these mechanisms are required in this area to avoid future control failures.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Keenan Amer ◽  
Karla Saavedra-Rodriguez ◽  
William C. Black ◽  
Emilie M. Gray

The study of fitness costs of insecticide resistance mutations in Aedes aegypti has generally been focused on life history parameters such as fecundity, mortality, and energy reserves. In this study we sought to investigate whether trade-offs might also exist between insecticide resistance and other abiotic stress resistance parameters. We evaluated the effects of the selection for permethrin resistance specifically on larval salinity and thermal tolerance. A population of A. aegypti originally from Southern Mexico was split into two strains, one selected for permethrin resistance and the other not. Larvae were reared at different salinities, and the fourth instar larvae were subjected to acute thermal stress; then, survival to both stresses was compared between strains. Contrary to our predictions, we found that insecticide resistance correlated with significantly enhanced larval thermotolerance. We found no clear difference in salinity tolerance between strains. This result suggests that insecticide resistance does not necessarily carry trade-offs in all traits affecting fitness and that successful insecticide resistance management strategies must account for genetic associations between insecticide resistance and abiotic stress resistance, as well as traditional life history parameters.


2016 ◽  
Author(s):  

The sustainability of malaria control in Africa is threatened by rising levels of insecticide resistance, and new tools to prevent malaria transmission are urgently needed. To gain a better understanding of the mosquito populations that transmit malaria, we sequenced the genomes of 765 wild specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa. The data reveal high levels of genetic diversity, with over 50 million single nucleotide polymorphisms across the 230 Mbp genome. We observe complex patterns of population structure and marked variations in local population size, some of which may be due at least in part to malaria control interventions. Insecticide resistance genes show strong signatures of recent selection associated with multiple independent mutations spreading over large geographical distances and between species. The genetic variability of natural populations substantially reduces the target space for novel gene-drive strategies for mosquito control. This large dataset provides a foundation for tracking the emergence and spread of insecticide resistance and developing new vector control tools.


2021 ◽  
Author(s):  
Harun Njoroge ◽  
Arjen van’t Hof ◽  
Ambrose Oruni ◽  
Dimitra Pipini ◽  
Sanjay C. Nagi ◽  
...  

AbstractInsecticide resistance provides both an increasingly pressing threat to the control of vector-borne diseases and insights into the remarkable capacity of natural populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on deployment of pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs), but resistance in the major malaria vectors has increased over the last 15 years in concert with dramatic expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance in mosquitoes, which may almost entirely overcome pyrethroid efficacy, is crucial for the development and deployment of potentially resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes, including some commonly implicated in resistance. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border region around Lake Victoria, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolise pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin, a commonly-used LLIN insecticide. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets co-treated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid co-treated LLINs across African countries. Duplications of the Cyp6aa1 gene are common in An. gambiae across Africa and, given the enzymes metabolic activity, are likely to be a useful diagnostic for high levels of pyrethroid resistance.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Edward K. Githinji ◽  
Lucy W. Irungu ◽  
Paul N. Ndegwa ◽  
Maxwell G. Machani ◽  
Richard O. Amito ◽  
...  

Introduction. Knockdown resistance (kdr) is strongly linked to pyrethroid insecticide resistance in Anopheles gambiae in Africa, which may have vital significance to the current increased use of pyrethroid-treated bed net programmes. The study is aimed at determining species composition, levels of insecticide resistance, and knockdown patterns in Anopheles gambiae sensu lato in areas with and areas without insecticide resistance in Teso North and Teso South subcounties, Western Kenya. Materials and Methods. For WHO vulnerability tests, mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes (4944 at 100 mosquitoes per insecticide) which were exposed to 0.75% permethrin, 0.05% deltamethrin, and 0.1% bendiocarb using the WHO tube assay method. Species identification and kdr East gene PCRs were also performed on randomly selected mosquitoes from the collections; including adult mosquitoes (3448) sampled using standard collection methods. Results. Anopheles gambiae sensu stricto were the majority in terms of species composition at 78.9%. Bendiocarb caused 100% mortality while deltamethrin had higher insecticidal effects (77%) on female mosquitoes than permethrin (71%). Susceptible Kengatunyi cluster had higher proportion of An. arabiensis (20.9%) than resistant Rwatama (10.7%). Kengatunyi mosquitoes exposed to deltamethrin had the highest KDT50 R of 8.2. Both Anopheles gambiae sensu stricto and Anopheles arabiensis had equal S allelic frequency of 0.84. Indoor resting mosquitoes had 100% mortality rate after 24 h since exposure. Overall SS genotypic frequency in Teso North and Teso South subcounties was 79.4% against 13.7% homozygous LL genotype and 6.9% heterozygous LS genotype. There was a significant difference (ρ<0.05) in S allele frequencies between Kengatunyi (0.61) and Rwatama (0.95). Mosquito samples collected in 2013 had the highest S allelic frequency of 0.87. Discussion. Most likely, the higher the selection pressure exerted indoors by insecticidal nets, the higher were the resistance alleles. Use of pyrethroid impregnated nets and agrochemicals may have caused female mosquitoes to select for pyrethroid resistance. Different modes of action and chemical properties in different types of pyrethroids aggravated by a variety of edaphic and climatic factors may have caused different levels of susceptibility in both indoor and outdoor vectors to pyrethroids and carbamate. Species composition and populations in each collection method may have been influenced by insecticide resistance capacity in different species. Conclusions and Recommendations. Both phenotypic and genotypic insecticide resistance levels have been confirmed in Teso North and Teso South subcounties in Western Kenya. Insecticide resistance management practices in Kenya should be fast tracked and harmonized with agricultural sector agrochemical-based activities and legislation, and possibly switch to carbamate use in order to ease selection pressure on pyrethroids which are useable in insecticidal nets and indoor residual spray due to their low human toxicity. The implication of such high resistance levels in mosquitoes collected in Teso subcounties is that resistance is likely to persist and or even increase if monomolecules of permethrin and deltamethrin or both continue to be used in all net- and nonnet-based mosquito control purposes. Usage of mutually reinforcing piperonyl butoxide (PBO) that prohibits particular enzymes vital in metabolic activities inside mosquito systems and has been integrated into pyrethroid-LLINs to create pyrethroid-PBO nets is an extremely viable option.


Author(s):  
Yaser Salim Abadi ◽  
Alireza Sanei-Dehkordi ◽  
Azim Paksa ◽  
Mohammad Amin Gorouhi ◽  
Hassan Vatandoost

Background: Mosquitos due to their role in the transmission of different pathogens to humans are considered as an im­portant group in the phylum Arthropoda. According to the WHO and FAO guideline different groups of insecticide applied for controlling pests in both the agricultural and public health sectors. Methods: All the data published about resistant status of the mosquitoes Anopheles, Culex, Aedes and Culiseta species were searched on PubMed, Elsevier, Web of Science, Magiran and google scholar. The objectives of this study was to review the trend of resistance to insecticides during 2000–2020 in medically important mosquitoes in Iran. The criteria for resistant are followed according to WHO guideline. Results: The Results showed that there are widespread, multiple resistances in the country to different organochlorine, organophosphates, carbamate and pyrethroids insecticides in the mosquitoes. Conclusion: The effect of pesticide residues on the environment could be a cause for selection pressure on mosquitos and lead to insecticides resistance to them. Insecticides resistance is main challenge of the vector control program. Also result will provide a guideline for control of the mosquito-borne diseases in the country as well as the world.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1948
Author(s):  
Moussa Diallo ◽  
Majidah Hamid-Adiamoh ◽  
Ousmane Sy ◽  
Pape Cheikh Sarr ◽  
Jarra Manneh ◽  
...  

The evolution and spread of insecticide resistance mechanisms amongst malaria vectors across the sub-Saharan Africa threaten the effectiveness and sustainability of current insecticide-based vector control interventions. However, a successful insecticide resistance management plan relies strongly on evidence of historical and contemporary mechanisms circulating. This study aims to retrospectively determine the evolution and spread of pyrethroid resistance mechanisms among natural Anopheles gambiae s.l. populations in Senegal. Samples were randomly drawn from an existing mosquito sample, collected in 2013, 2017, and 2018 from 10 sentinel sites monitored by the Senegalese National Malaria Control Programme (NMCP). Molecular species of An. gambiae s.l. and the resistance mutations at the Voltage-gated Sodium Channel 1014 (Vgsc-1014) locus were characterised using PCR-based assays. The genetic diversity of the Vgsc gene was further analyzed by sequencing. The overall species composition revealed the predominance of Anopheles arabiensis (73.08%) followed by An. gambiae s.s. (14.48%), Anopheles coluzzii (10.94%) and Anopheles gambiae–coluzii hybrids (1.48%). Both Vgsc-1014F and Vgsc-1014S mutations were found in all studied populations with a spatial variation of allele frequencies from 3% to 90%; and 7% to 41%, respectively. The two mutations have been detected since 2013 across all the selected health districts, with Vgsc-L1014S frequency increasing over the years while Vgsc-1014F decreasing. At species level, the Vgsc-1014F and Vgsc-1014S alleles were more frequent amongst An. gambiae s.s. (70%) and An. arabiensis (20%). The Vgsc gene was found to be highly diversified with eight different haplotypes shared between Vgsc-1014F and Vgsc-1014S. The observed co-occurrence of Vgsc-1014F and Vgsc-1014S mutations suggest that pyrethroid resistance is becoming a widespread phenomenon amongst malaria vector populations, and the NMCP needs to address this issue to sustain the gain made in controlling malaria.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Diana Omoke ◽  
Mathew Kipsum ◽  
Samson Otieno ◽  
Edward Esalimba ◽  
Mili Sheth ◽  
...  

Abstract Background Insecticide resistance poses a growing challenge to malaria vector control in Kenya and around the world. Following evidence of associations between the mosquito microbiota and insecticide resistance, the microbiota of Anopheles gambiae sensu stricto (s.s.) from Tulukuyi village, Bungoma, Kenya, with differing permethrin resistance profiles were comparatively characterized. Methods Using the CDC bottle bioassay, 133 2–3 day-old, virgin, non-blood fed female F1 progeny of field-caught An. gambiae s.s. were exposed to five times (107.5 µg/ml) the discriminating dose of permethrin. Post bioassay, 50 resistant and 50 susceptible mosquitoes were subsequently screened for kdr East and West mutations, and individually processed for microbial analysis using high throughput sequencing targeting the universal bacterial and archaeal 16S rRNA gene. Results 47 % of the samples tested (n = 133) were resistant, and of the 100 selected for further processing, 99 % were positive for kdr East and 1 % for kdr West. Overall, 84 bacterial taxa were detected across all mosquito samples, with 36 of these shared between resistant and susceptible mosquitoes. A total of 20 bacterial taxa were unique to the resistant mosquitoes and 28 were unique to the susceptible mosquitoes. There were significant differences in bacterial composition between resistant and susceptible individuals (PERMANOVA, pseudo-F = 2.33, P = 0.001), with presence of Sphingobacterium, Lysinibacillus and Streptococcus (all known pyrethroid-degrading taxa), and the radiotolerant Rubrobacter, being significantly associated with resistant mosquitoes. On the other hand, the presence of Myxococcus, was significantly associated with susceptible mosquitoes. Conclusions This is the first report of distinct microbiota in An. gambiae s.s. associated with intense pyrethroid resistance. The findings highlight differentially abundant bacterial taxa between resistant and susceptible mosquitoes, and further suggest a microbe-mediated mechanism of insecticide resistance in mosquitoes. These results also indicate fixation of the kdr East mutation in this mosquito population, precluding further analysis of its associations with the mosquito microbiota, but presenting the hypothesis that any microbe-mediated mechanism of insecticide resistance would be likely of a metabolic nature. Overall, this study lays initial groundwork for understanding microbe-mediated mechanisms of insecticide resistance in African mosquito vectors of malaria, and potentially identifying novel microbial markers of insecticide resistance that could supplement existing vector surveillance tools.


Sign in / Sign up

Export Citation Format

Share Document