scholarly journals Differentially expressed extracellular vesicle, exosome and non-exosome miRNA profile in high and low tick-resistant beef cattle

Author(s):  
Pevindu Abeysinghe ◽  
Natalie Turner ◽  
Hassendrini Peiris ◽  
Kanchan Vaswani ◽  
Nick Cameron ◽  
...  

Abstract Heavy tick burden on beef cattle account for huge economic losses globally, with an estimated value of US$22-30 billion per annum. In Australia, ticks cost the northern beef industry approximately A$170-200 million. Methods to evaluate and predict tick resistance would therefore be of great value to the global cattle trade. Exosomes (EX) are small extracellular vesicles (EVs) of ~30-150nm diameter and have gained popularity for their diagnostic and prognostic potential. EX contain, among other biomolecules, various types of RNA including micro-RNA (miRNA) and long noncoding RNA (lncRNA). MiRNA specifically have been validated as therapeutic biomarkers as they perform regulatory functions at the post-transcriptional level and are differentially expressed between divergent groups. The objective of the present study was to evaluate the miRNA profiles of EV and fractionated exosomal samples of high and low tick-resistant beef cattle to highlight potential miRNA biomarkers of tick resistance. Cows (n = 3/group) were classified into high or low tick resistant groups according to a novel scoring system. EVs and EX were isolated and fractionated from the blood plasma of high and low tick resistant cattle using established isolation and enrichment protocols. The resultant EX and non-EX samples were processed for next generation miRNA sequencing. Offspring of the cows in each high and low tick resistant group underwent the same processing for blood plasma EX, non-EX and miRNA analysis to evaluate the heritability of miRNA associated with tick resistance.A total of 2631 miRNAs were identified in EX and non-EX fractionated samples from high and low tick-resistant beef cattle. MiR-449a was highly expressed in maternal high tick-resistant EX samples. Of these, 174 were novel miRNAs, and 10 were differentially expressed (DE) (FDR < 0.05). These 10 DE miRNAs were also present in EVs, and three miRNAs were highly expressed: miR-2419-3p, miR-7861-3p and miR-2372-5p. Although 196 novel miRNAs were identified in fractionated samples of offspring, no miRNA were differentially expressed in these animals.

Author(s):  
Pevindu Abeysinghe ◽  
Natalie Turner ◽  
Hassendrini Peiris ◽  
Kanchan Vaswani ◽  
Nick Cameron ◽  
...  

Heavy tick burden on beef cattle account for huge economic losses globally, with an estimated value of US$22-30 billion per annum. In Australia, ticks cost the northern beef industry approximately A$170-200 million. Methods to evaluate and predict tick resistance would therefore be of great value to the global cattle trade. Exosomes (EX) are small extracellular vesicles (EVs) of ~30-150nm diameter and have gained popularity for their diagnostic and prognostic potential. EX contain, among other biomolecules, various types of RNA including micro-RNA (miRNA) and long noncoding RNA (lncRNA). MiRNA specifically have been validated as therapeutic biomarkers as they perform regulatory functions at the post-transcriptional level and are differentially expressed between divergent groups. The objective of the present study was to evaluate the miRNA profiles of EV and fractionated exosomal samples of high and low tick-resistant beef cattle to highlight potential miRNA biomarkers of tick resistance. Cows (n = 3/group) were classified into high or low tick resistant groups according to a novel scoring system. EVs and EX were isolated and fractionated from the blood plasma of high and low tick resistant cattle using established isolation and enrichment protocols. The resultant EX and non-EX samples were processed for next generation miRNA sequencing. Offspring of the cows in each high and low tick resistant group underwent the same processing for blood plasma EX, non-EX and miRNA analysis to evaluate the heritability of miRNA associated with tick resistance. A total of 2631 miRNAs were identified in EX and non-EX fractionated samples from high and low tick-resistant beef cattle. MiR-449a was highly expressed in maternal high tick-resistant EX samples. Of these, 174 were novel miRNAs, and 10 were differentially expressed (DE) (FDR &lt; 0.05). These 10 DE miRNAs were also present in EVs, and three miRNAs were highly expressed: miR-2419-3p, miR-7861-3p and miR-2372-5p. Although 196 novel miRNAs were identified in fractionated samples of offspring, no miRNA were differentially expressed in these animals.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 789-798 ◽  
Author(s):  
Xiaoxu Chen ◽  
Dongxue Che ◽  
Pengfei Zhang ◽  
Xueliang Li ◽  
Qingqing Yuan ◽  
...  

Spermatogenesis includes mitosis of spermatogonia, meiosis of pachytene spermatocytes and spermiogenesis of round spermatids. MiRNAs as a ~22 nt small noncoding RNA are involved in regulating spermatogenesis at post-transcriptional level. However, the dynamic miRNAs expression in the developmental porcine male germ cells remains largely undefined. In this study, we purified porcine spermatogonia, pachytene spermatocytes and round spermatids using a STA-PUT apparatus. A small RNA deep sequencing and analysis were conducted to establish a miRNAs profiling in these male germ cells. We found that 19 miRNAs were differentially expressed between spermatogonia and pachytene spermatocytes, and 74 miRNAs differentially expressed between pachytene spermatocytes and round spermatids. Furthermore, 91 miRNAs were upregulated, while 108 miRNAs were downregulated in spermatozoa. We demonstrated that ssc-miR-10a-5p, ssc-miR-125b, ssc-let-7f and ssc-miR-186 were highly expressed in spermatogonia, pachytene spermatocytes, round spermatids and spermatozoa respectively. The findings could provide novel insights into roles of miRNAs in regulation of porcine spermatogenesis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xibi Fang ◽  
Lixin Xia ◽  
Haibin Yu ◽  
Wei He ◽  
Zitong Bai ◽  
...  

Alternative splicing is a ubiquitous regulatory mechanism in gene expression that allows a single gene generating multiple messenger RNAs (mRNAs). Significant differences in fat deposition ability and meat quality traits have been reported between Japanese black cattle (Wagyu) and Chinese Red Steppes, which presented a unique model for analyzing the effects of transcriptional level on marbling fat in livestock. In previous studies, the differentially expressed genes (DGEs) in longissimus dorsi muscle (LDM) samples between Wagyu and other breeds of beef cattle have been reported. In this study, we further investigated the differences in alternative splicing in LDM between Wagyu and Chinese Red Steppes cattle. We identified several alternative splicing types including cassette exon, mutually exclusive exons, alternative 5′ splice site, alternative 3′ splice site, alternative start exon, and intron retention. In total, 115 differentially expressed alternatively spliced genes were obtained, of which 17 genes were enriched in the metabolic pathway. Among the 17 genes, 5 genes, including MCAT, CPT1B, HADHB, SIRT2, and DGAT1, appeared to be the novel spliced candidates that affect the lipid metabolism in cattle. Additionally, another 17 genes were enriched in the Gene Ontology (GO) terms related to muscle development, such as NR4A1, UQCC2, YBX3/CSDA, ITGA7, etc. Overall, altered splicing and expression levels of these novel candidates between Japanese black cattle and Chinese Red Steppes revealed by RNA-seq suggest their potential involvement in the muscle development and fat deposition of beef cattle.


2020 ◽  
Vol 98 (12) ◽  
Author(s):  
Waseem Abbas ◽  
Brittney N Keel ◽  
Stephan D Kachman ◽  
Samodha C Fernando ◽  
James E Wells ◽  
...  

Abstract Abscess is the highest cause of liver condemnation and is estimated to cost the beef industry US$64 million annually. Fusobacterium necrophorum, commonly found in the bovine rumen, is the primary bacteria associated with liver abscess in cattle. Theoretically, damage to the rumen wall allows F. necrophorum to invade the bloodstream and colonize the liver. The objective of this study was to determine the changes in gene expression in the rumen epithelium and microbial populations adherent to the rumen epithelium and in the rumen contents of beef cattle with liver abscesses compared with those with no liver abscesses. Rumen epithelial tissue and rumen content were collected from 31 steers and heifers with liver abscesses and 30 animals with no liver abscesses. Ribonucleic acid (RNA) sequencing was performed on the rumen epithelium, and a total of 221 genes were identified as differentially expressed in the animals with liver abscesses compared with animals with no abscesses, after removal of genes that were identified as a result of interaction with sex. The nuclear factor kappa-light-chain enhancer of activated B cells signaling and interferon signaling pathways were significantly enriched in the differentially expressed gene (DEG) set. The majority of the genes in these pathways were downregulated in animals with liver abscesses. In addition, RNA translation and protein processing genes were also downregulated, suggesting that protein synthesis may be compromised in animals with liver abscesses. The rumen content bacterial communities were significantly different from the rumen wall epimural bacterial communities. Permutational multivariate analysis of variance (PERMANOVA) analysis did not identify global differences in the microbiome of the rumen contents but did identify differences in the epimural bacterial communities on the rumen wall of animals without and with liver abscesses. In addition, associations between DEG and specific bacterial amplicon sequence variants of epimural bacteria were observed. The DEG and bacterial profile on the rumen papillae identified in this study may serve as a method to monitor animals with existing liver abscesses or to predict those that are more likely to develop liver abscesses.


Author(s):  
Christoph Stingl ◽  
Angela Bureo Gonzalez ◽  
Coşkun Güzel ◽  
Kai Yi Nadine Phoa ◽  
Michail Doukas ◽  
...  

Abstract Background Barrett’s esophagus (BE) is a known precursor lesion and the strongest risk factor for esophageal adenocarcinoma (EAC), a common and lethal type of cancer. Prediction of risk, the basis for efficient intervention, is commonly solely based on histologic examination. This approach is challenged by problems such as inter-observer variability in the face of the high heterogeneity of dysplastic tissue. Molecular markers might offer an additional way to understand the carcinogenesis and improve the diagnosis—and eventually treatment. In this study, we probed significant proteomic changes during dysplastic progression from BE into EAC. Methods During endoscopic mucosa resection, epithelial and stromal tissue samples were collected by laser capture microdissection from 10 patients with normal BE and 13 patients with high-grade dysplastic/EAC. Samples were analyzed by mass spectrometry-based proteomic analysis. Expressed proteins were determined by label-free quantitation, and gene set enrichment was used to find differentially expressed pathways. The results were validated by immunohistochemistry for two selected key proteins (MSH6 and XPO5). Results Comparing dysplastic/EAC to non-dysplastic BE, we found in equal volumes of epithelial tissue an overall up-regulation in terms of protein abundance and diversity, and determined a set of 226 differentially expressed proteins. Significantly higher expressions of MSH6 and XPO5 were validated orthogonally and confirmed by immunohistochemistry. Conclusions Our results demonstrate that disease-related proteomic alterations can be determined by analyzing minute amounts of cell-type-specific collected tissue. Further analysis indicated that alterations of certain pathways associated with carcinogenesis, such as micro-RNA trafficking, DNA damage repair, and spliceosome activity, exist in dysplastic/EAC.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 431
Author(s):  
Longxue Ma ◽  
Xu Li ◽  
Xiaoyun Ma ◽  
Qiang Yu ◽  
Xiaohua Yu ◽  
...  

Peanuts are frequently infected by Aspergillus strains and then contaminated by aflatoxins (AF), which brings out economic losses and health risks. AF production is affected by diverse environmental factors, especially water activity (aw). In this study, A. flavus was inoculated into peanuts with different aw (0.90, 0.95, and 0.99). Both AFB1 yield and conidia production showed the highest level in aw 0.90 treatment. Transcriptional level analyses indicated that AF biosynthesis genes, especially the middle- and later-stage genes, were significantly up-regulated in aw 0.90 than aw 0.95 and 0.99. AtfB could be the pivotal regulator response to aw variations, and could further regulate downstream genes, especially AF biosynthesis genes. The expressions of conidia genes and relevant regulators were also more up-regulated at aw 0.90 than aw 0.95 and 0.99, suggesting that the relative lower aw could increase A. flavus conidia development. Furthermore, transcription factors involved in sexual development and nitrogen metabolism were also modulated by different aw. This research partly clarified the regulatory mechanism of aw on AF biosynthesis and A. flavus development and it would supply some advice for AF prevention in food storage.


2016 ◽  
Vol 94 (5) ◽  
pp. 1834-1843 ◽  
Author(s):  
R. R. Mota ◽  
P. S. Lopes ◽  
R. J. Tempelman ◽  
F. F. Silva ◽  
I. Aguilar ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Dongyun Lei ◽  
Lechun Lv ◽  
Li Yang ◽  
Wenjuan Wu ◽  
Yong Liu ◽  
...  

Chronic actinic dermatitis (CAD), a photosensitive dermatosis, is characterized by inflammatory lesions, especially on sun-exposed skin. However, its pathogenesis remains unclear. In this study, second-generation RNA sequencing and comprehensive bioinformatics analyses of mRNAs and long noncoding RNAs (lncRNAs) were performed to determine the transcriptome profiles of patients with CAD. A total 6889 annotated lncRNAs, 341 novel lncRNAs, and 65091 mRNAs were identified. Interestingly, patients with CAD and healthy controls showed distinct transcriptome profiles. Indeed, 198 annotated (81.48%) and 45 novel (18.52%) lncRNAs were differentially expressed between the two groups. GO, KEGG, and RGSEA analyses of lncRNAs showed that inflammatory and immune response related pathways played crucial roles in the pathogenetic mechanism of CAD. In addition, we unveiled key differentially expressed lncRNAs, including lncRNA RP11-356I2.4 which plays a role probably by regulating TNFAIP3 and inflammation. qRT-PCR data validated the differentially expressed genes. The newly identified lncRNAs may have potential roles in the development of CAD; these findings lay a solid foundation for subsequent functional exploration of lncRNAs and mRNAs as therapeutic targets for CAD.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 239-239
Author(s):  
Ashley S Ling ◽  
Taylor Krause ◽  
Amanda Warner ◽  
Jason Duggin ◽  
Bradley Heins ◽  
...  

Abstract Horn flies (Haematobia irritans) are a major nuisance to cattle, especially in warm, humid regions, and are estimated to cause economic losses in excess of $1 billion annually to the U.S. beef cattle industry. Variation in horn fly tolerance has been reported within and across breeds, and heritability estimates ranging between 10 and 80% show a clear genetic basis. However, collecting fly abundance phenotypes is costly and logistically demanding, which precludes large-scale implementation. Consequently, finding correlated phenotypes and endo-phenotypes that are heritable and relatively easy to measure would facilitate implementation of horn fly tolerance genetic improvement programs. Thrombin (TH), a blood coagulation precursor, has a reported association with horn fly count variation within and across cattle breeds. In this study, the genetic basis of thrombin in beef cattle was investigated. Blood samples and horn fly count were collected on 360 cows and heifers twice during the summer of 2019 (June and August). Due to uncertainty associated with assessment of horn fly abundance and thrombin and the fact that economic losses occur only when fly abundance exceeds a certain threshold, thrombin was categorized into 4 classes (1=TH &gt; 500 ng/ml; 2=250&lt; TH&lt; 500 ng/ml; 3=100&lt; TH&lt; 250 ng/ml; and 4=TH&lt; 100 ng/ml). The trait was analyzed using linear (continuous) and threshold (discrete) mixed models. Both models included farm, pregnancy status, and cow age as fixed effects and additive and permanent environment random effects. The pedigree included 642 animals. Estimates of heritability were 0.24 and 0.29 using linear and threshold models, respectively. Estimates of repeatability were slightly higher using the threshold model (0.21 vs 0.19). Despite the small data size, all estimates were non-zero based on their respective highest posterior density intervals. These results indicate reasonable genetic variation for thrombin that could be harnessed for improvement of horn fly tolerance in cattle.


Sign in / Sign up

Export Citation Format

Share Document