scholarly journals Profiling of miRNAs in porcine germ cells during spermatogenesis

Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 789-798 ◽  
Author(s):  
Xiaoxu Chen ◽  
Dongxue Che ◽  
Pengfei Zhang ◽  
Xueliang Li ◽  
Qingqing Yuan ◽  
...  

Spermatogenesis includes mitosis of spermatogonia, meiosis of pachytene spermatocytes and spermiogenesis of round spermatids. MiRNAs as a ~22 nt small noncoding RNA are involved in regulating spermatogenesis at post-transcriptional level. However, the dynamic miRNAs expression in the developmental porcine male germ cells remains largely undefined. In this study, we purified porcine spermatogonia, pachytene spermatocytes and round spermatids using a STA-PUT apparatus. A small RNA deep sequencing and analysis were conducted to establish a miRNAs profiling in these male germ cells. We found that 19 miRNAs were differentially expressed between spermatogonia and pachytene spermatocytes, and 74 miRNAs differentially expressed between pachytene spermatocytes and round spermatids. Furthermore, 91 miRNAs were upregulated, while 108 miRNAs were downregulated in spermatozoa. We demonstrated that ssc-miR-10a-5p, ssc-miR-125b, ssc-let-7f and ssc-miR-186 were highly expressed in spermatogonia, pachytene spermatocytes, round spermatids and spermatozoa respectively. The findings could provide novel insights into roles of miRNAs in regulation of porcine spermatogenesis.

2021 ◽  
Vol 99 (3) ◽  
Author(s):  
Lauren G Chukrallah ◽  
Aditi Badrinath ◽  
Kelly Seltzer ◽  
Elizabeth M Snyder

Abstract Ruminants are major producers of meat and milk, thus managing their reproductive potential is a key element in cost-effective, safe, and efficient food production. Of particular concern, defects in male germ cells and female germ cells may lead to significantly reduced live births relative to fertilization. However, the underlying molecular drivers of these defects are unclear. Small noncoding RNAs, such as piRNAs and miRNAs, are known to be important regulators of germ-cell physiology in mouse (the best-studied mammalian model organism) and emerging evidence suggests that this is also the case in a range of ruminant species, in particular bovine. Similarities exist between mouse and bovids, especially in the case of meiotic and postmeiotic male germ cells. However, fundamental differences in small RNA abundance and metabolism between these species have been observed in the female germ cell, differences that likely have profound impacts on their physiology. Further, parentally derived small noncoding RNAs are known to influence early embryos and significant species-specific differences in germ-cell born small noncoding RNAs have been observed. These findings demonstrate the mouse to be an imperfect model for understanding germ-cell small noncoding RNA biology in ruminants and highlight the need to increase research efforts in this underappreciated aspect of animal reproduction.


3 Biotech ◽  
2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Sujay Paul ◽  
Luis M. Ruiz-Manriquez ◽  
Francisco I. Serrano-Cano ◽  
Carolina Estrada-Meza ◽  
Karla A. Solorio-Diaz ◽  
...  

AbstractMicroRNAs (miRNAs) are a group of small noncoding RNA molecules with significant capacity to regulate the gene expression at the post-transcriptional level in a sequence-specific manner either through translation repression or mRNA degradation triggering a fine-tuning biological impact. They have been implicated in several processes, including cell growth and development, signal transduction, cell proliferation and differentiation, metabolism, apoptosis, inflammation, and immune response modulation. However, over the last few years, extensive studies have shown the relevance of miRNAs in human pathophysiology. Common human parasitic diseases, such as Malaria, Leishmaniasis, Amoebiasis, Chagas disease, Schistosomiasis, Toxoplasmosis, Cryptosporidiosis, Clonorchiasis, and Echinococcosis are the leading cause of death worldwide. Thus, identifying and characterizing parasite-specific miRNAs and their host targets, as well as host-related miRNAs, are important for a deeper understanding of the pathophysiology of parasite-specific diseases at the molecular level. In this review, we have demonstrated the impact of human microRNAs during host−parasite interaction as well as their potential to be used for diagnosis and prognosis purposes.


2021 ◽  
Author(s):  
Pevindu Abeysinghe ◽  
Natalie Turner ◽  
Hassendrini Peiris ◽  
Kanchan Vaswani ◽  
Nick Cameron ◽  
...  

Abstract Heavy tick burden on beef cattle account for huge economic losses globally, with an estimated value of US$22-30 billion per annum. In Australia, ticks cost the northern beef industry approximately A$170-200 million. Methods to evaluate and predict tick resistance would therefore be of great value to the global cattle trade. Exosomes (EX) are small extracellular vesicles (EVs) of ~30-150nm diameter and have gained popularity for their diagnostic and prognostic potential. EX contain, among other biomolecules, various types of RNA including micro-RNA (miRNA) and long noncoding RNA (lncRNA). MiRNA specifically have been validated as therapeutic biomarkers as they perform regulatory functions at the post-transcriptional level and are differentially expressed between divergent groups. The objective of the present study was to evaluate the miRNA profiles of EV and fractionated exosomal samples of high and low tick-resistant beef cattle to highlight potential miRNA biomarkers of tick resistance. Cows (n = 3/group) were classified into high or low tick resistant groups according to a novel scoring system. EVs and EX were isolated and fractionated from the blood plasma of high and low tick resistant cattle using established isolation and enrichment protocols. The resultant EX and non-EX samples were processed for next generation miRNA sequencing. Offspring of the cows in each high and low tick resistant group underwent the same processing for blood plasma EX, non-EX and miRNA analysis to evaluate the heritability of miRNA associated with tick resistance.A total of 2631 miRNAs were identified in EX and non-EX fractionated samples from high and low tick-resistant beef cattle. MiR-449a was highly expressed in maternal high tick-resistant EX samples. Of these, 174 were novel miRNAs, and 10 were differentially expressed (DE) (FDR < 0.05). These 10 DE miRNAs were also present in EVs, and three miRNAs were highly expressed: miR-2419-3p, miR-7861-3p and miR-2372-5p. Although 196 novel miRNAs were identified in fractionated samples of offspring, no miRNA were differentially expressed in these animals.


2021 ◽  
Vol 118 (17) ◽  
pp. e2011574118
Author(s):  
Galina Yurevna Zheleznyakova ◽  
Eliane Piket ◽  
Maria Needhamsen ◽  
Michael Hagemann-Jensen ◽  
Diana Ekman ◽  
...  

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.


Author(s):  
Pevindu Abeysinghe ◽  
Natalie Turner ◽  
Hassendrini Peiris ◽  
Kanchan Vaswani ◽  
Nick Cameron ◽  
...  

Heavy tick burden on beef cattle account for huge economic losses globally, with an estimated value of US$22-30 billion per annum. In Australia, ticks cost the northern beef industry approximately A$170-200 million. Methods to evaluate and predict tick resistance would therefore be of great value to the global cattle trade. Exosomes (EX) are small extracellular vesicles (EVs) of ~30-150nm diameter and have gained popularity for their diagnostic and prognostic potential. EX contain, among other biomolecules, various types of RNA including micro-RNA (miRNA) and long noncoding RNA (lncRNA). MiRNA specifically have been validated as therapeutic biomarkers as they perform regulatory functions at the post-transcriptional level and are differentially expressed between divergent groups. The objective of the present study was to evaluate the miRNA profiles of EV and fractionated exosomal samples of high and low tick-resistant beef cattle to highlight potential miRNA biomarkers of tick resistance. Cows (n = 3/group) were classified into high or low tick resistant groups according to a novel scoring system. EVs and EX were isolated and fractionated from the blood plasma of high and low tick resistant cattle using established isolation and enrichment protocols. The resultant EX and non-EX samples were processed for next generation miRNA sequencing. Offspring of the cows in each high and low tick resistant group underwent the same processing for blood plasma EX, non-EX and miRNA analysis to evaluate the heritability of miRNA associated with tick resistance. A total of 2631 miRNAs were identified in EX and non-EX fractionated samples from high and low tick-resistant beef cattle. MiR-449a was highly expressed in maternal high tick-resistant EX samples. Of these, 174 were novel miRNAs, and 10 were differentially expressed (DE) (FDR &lt; 0.05). These 10 DE miRNAs were also present in EVs, and three miRNAs were highly expressed: miR-2419-3p, miR-7861-3p and miR-2372-5p. Although 196 novel miRNAs were identified in fractionated samples of offspring, no miRNA were differentially expressed in these animals.


2005 ◽  
Vol 17 (2) ◽  
pp. 247 ◽  
Author(s):  
A. Honaramooz ◽  
W. Zeng ◽  
R. Rathi ◽  
J. Koster ◽  
O. Ryder ◽  
...  

In April 2003, two banteng (Bos javonicus) calves were born after heterologous nuclear transfer of donor cells from a genetically valuable individual frozen in 1978. One of the cloned banteng calves died at one week of age. The calf was found to have one scrotal and one abdominally cryptorchid testis. In an attempt to preserve male germ cells from this valuable animal, parts of each testis were shipped on ice to the University of Pennsylvania for xenografting. Grafting of testis tissue from immature domestic animals and monkeys under the back skin of immunodeficient mice can result in complete spermatogenesis, albeit with different levels of efficiency in different species. The objective of this experiment was to investigate if grafting of immature banteng testis tissue would result in spermatogenesis in a mouse host. Small fragments of tissue (about 1 mm, 3 each) from both testes were grafted under the back skin (4 pieces of scrotal testis on the right side and 4 pieces of retained testis on the left side) of 6 castrated male immunodeficient mice. Histological examination of the testis xenografts was performed 3, 6, 9, 12, and 15 months after transplantation. Weight of the seminal vesicles in the host mouse was recorded as an indicator of bioactive testosterone produced by the xenografts. At the time of grafting, both testes contained seminiferous cords with immature Sertoli cells and gonocytes. At 3, 6, and 9 months after grafting, pachytene spermatocytes were present in the xenografts of the scrotal testis whereas no germ cell differentiation was observed in grafts from the retained testis. However, spermatogenesis in grafts of the scrotal testis did not proceed further through meiosis in grafts analyzed at 12 and 15 months after grafting, with pachytene spermatocytes still the most advanced germ cell type present in grafts recovered 15 months after grafting. The weight of the seminal vesicles in the castrated host mice was restored to pre-castration values showing that xenografts were releasing bioactive testosterone. These results indicate that banteng spermatogenesis was initiated in the mouse host but became arrested at meiosis as observed previously in xenografts of immature bovine or equine testis. Therefore, haploid germ cells could not be recovered. This represents the first example of trying to preserve fertility from a rare, valuable newborn animal by testis tissue xenografting. While xenografting presents a previously unavailable option for preservation of male germ cells from immature individuals, the efficiency of sperm production in testis xenografts appears to be variable and has to be determined empirically for different donor species. This work was supported by USDA 03-35203-13486.


Sign in / Sign up

Export Citation Format

Share Document