scholarly journals Application of Artificial Neural Networks for Corrosion Behavior of Ni-Zn Electrophosphate Coating on Galvanized Steel and Gene Expression Programming Models

Author(s):  
Malihe Zeraati ◽  
Narendra Pal Singh Chauhan ◽  
Ghasem Sargazi

Abstract Zn–Ni electrophosphate coating is one of the most commonly used materials in industrial applications. Corrosion resistance of this coating is very important in order to achieve the minimum corrosion current of the Zn–Ni electrophosphate coating. This paper described a new reliability simulation framework to determine the corrosion behavior of coating using gene artificial neural network (ANN) to estimate the corrosion current of the coating. The input parameters of the model are temperature, pH of electroplating bath, current density and Ni2+ concentration and corrosion current defines as output. The effectiveness and accuracy of the model was checked by utilizing absolute fraction of variance (R2=0.9999), mean absolute percentage error (MAPE=0.0171) and root mean square error (RMSE= 0.0002). The determined using genetic algorithm (GA) and the optimum practice condition are proposed.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5188
Author(s):  
Mitsugu Hasegawa ◽  
Daiki Kurihara ◽  
Yasuhiro Egami ◽  
Hirotaka Sakaue ◽  
Aleksandar Jemcov

An artificial neural network (ANN) was constructed and trained for predicting pressure sensitivity using an experimental dataset consisting of luminophore content and paint thickness as chemical and physical inputs. A data augmentation technique was used to increase the number of data points based on the limited experimental observations. The prediction accuracy of the trained ANN was evaluated by using a metric, mean absolute percentage error. The ANN predicted pressure sensitivity to luminophore content and to paint thickness, within confidence intervals based on experimental errors. The present approach of applying ANN and the data augmentation has the potential to predict pressure-sensitive paint (PSP) characterizations that improve the performance of PSP for global surface pressure measurements.


2012 ◽  
pp. 1-16 ◽  
Author(s):  
Norhisham Bakhary ◽  
Khairulzan Yahya ◽  
Chin Nam Ng

Kebelakangan ini ramai penyelidik mendapati ‘Artificial Neural Network’ (ANN) untuk digunakan dalam berbagai bidang kejuruteraan awam. Banyak aplikasi ANN dalam proses peramalan menghasilkan kejayaan. Kajian ini memfokuskan kepada penggunaan siri masa ‘Univariate Neural Network’ untuk meramalkan permintaan rumah kos rendah di daerah Petaling Jaya, Selangor. Dalam kajian ini, beberapa kes bagi sesi latihan dan ramalan telah dibuat untuk mendapatkan model terbaik bagi meramalkan permintaan rumah. Nilai RMSE yang paling rendah yang diperolehi bagi tahap validasi adalah 0.560 dan nilai MAPE yang diperolehi adalah 8.880%. Hasil kajian ini menunjukkan kaedah ini memberikan keputusan yang boleh diterima dalam peramalan permintaan rumah berdasarkan data masa lalu. Kata kunci: Univariate Neural Network, permintaan rumah kos rendah, RMSE, MAPE Recently researchers have found the potential applications of Artificial Neural Network (ANN) in various fields in civil engineering. Many attempts to apply ANN as a forecasting tool has been successful. This paper highlighted the application of Time Series Univariate Neural Network in forecasting the demand of low cost house in Petaling Jaya district, Selangor, using historical data ranging from February 1996 to Appril 2000. Several cases of training and testing were conducted to obtain the best neural network model. The lowest Root Mean Square Error (RMSE) obtained for validation step is 0.560 and Mean Absolute Percentage Error (MAPE) is 8.880%. These results show that ANN is able to provide reliable result in term of forecasting the housing demand based on previous housing demand record. Key words: Time Series Univariate Neural Network, low cost housing demand, RMSE, MAPE


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Tamer Khatib ◽  
Azah Mohamed ◽  
K. Sopian ◽  
M. Mahmoud

This paper presents an assessment for the artificial neural network (ANN) based approach for hourly solar radiation prediction. The Four ANNs topologies were used including a generalized (GRNN), a feed-forward backpropagation (FFNN), a cascade-forward backpropagation (CFNN), and an Elman backpropagation (ELMNN). The three statistical values used to evaluate the efficacy of the neural networks were mean absolute percentage error (MAPE), mean bias error (MBE) and root mean square error (RMSE). Prediction results show that the GRNN exceeds the other proposed methods. The average values of the MAPE, MBE and RMSE using GRNN were 4.9%, 0.29% and 5.75%, respectively. FFNN and CFNN efficacies were acceptable in general, but their predictive value was degraded in poor solar radiation conditions. The average values of the MAPE, MBE and RMSE using the FFNN were 23%, −.09% and 21.9%, respectively, while the average values of the MAPE, MBE and RMSE using CFNN were 22.5%, −19.15% and 21.9%, respectively. ELMNN fared the worst among the proposed methods in predicting hourly solar radiation with average MABE, MBE and RMSE values of 34.5%, −11.1% and 34.35%. The use of the GRNN to predict solar radiation in all climate conditions yielded results that were highly accurate and efficient.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


2021 ◽  
Vol 75 (5) ◽  
pp. 277-283
Author(s):  
Jelena Lubura ◽  
Predrag Kojic ◽  
Jelena Pavlicevic ◽  
Bojana Ikonic ◽  
Radovan Omorjan ◽  
...  

Determination of rubber rheological properties is indispensable in order to conduct efficient vulcanization process in rubber industry. The main goal of this study was development of an advanced artificial neural network (ANN) for quick and accurate vulcanization data prediction of commercially available rubber gum for tire production. The ANN was developed by using the platform for large-scale machine learning TensorFlow with the Sequential Keras-Dense layer model, in a Python framework. The ANN was trained and validated on previously determined experimental data of torque on time at five different temperatures, in the range from 140 to 180 oC, with a step of 10 oC. The activation functions, ReLU, Sigmoid and Softplus, were used to minimize error, where the ANN model with Softplus showed the most accurate predictions. Numbers of neurons and layers were varied, where the ANN with two layers and 20 neurons in each layer showed the most valid results. The proposed ANN was trained at temperatures of 140, 160 and 180 oC and used to predict the torque dependence on time for two test temperatures (150 and 170 oC). The obtained solutions were confirmed as accurate predictions, showing the mean absolute percentage error (MAPE) and mean squared error (MSE) values were less than 1.99 % and 0.032 dN2 m2, respectively.


2020 ◽  
Vol 11 (21) ◽  
pp. 55-70
Author(s):  
Murat Cuhadar

Tourism demand is the basis on which all commercial decisions concerning tourism ultimately depend. Accurate estimation of tourism demand is essential for the tourism industry because it can help reduce risk and uncertainty as well as effectively provide basic information for better tourism planning. The purpose of this study is to develop the optimal forecasting model that yields the highest accuracy when compared to the forecast performances of three different methods, namely Artificial Neural Network (ANN), Exponential Smoothing, and Box-Jenkins methods for forecasting monthly inbound tourist flows to Croatia. Prior studies have been applied to forecast tourism demand to Croatia based on time series models and casual methods. However, the monthly and comparative tourism demand forecasting studies using ANNs are still limited, and this paper aims to fill this gap. The number of monthly foreign tourist arrivals to Croatia covers the period between January 2005-December 2019 data were used to build optimal forecasting models. Forecasting performances of the models were measured by Mean Absolute Percentage Error (MAPE) statistics. As a result of the experiments carried out, when compared to the forecasting performances of various models, 12 lagged ANN models, which have [4-3-1] architecture, were seen to perform best among all models applied in this study. Considering both the empirical findings obtained from this study and previous studies on tourism forecasting, it can be seen that ANN models that do not have any negativities (such as over-training, faulty architecture, etc.) produce successful forecasting results when compared with results generated by conventional statistical methods.


2018 ◽  
Vol 33 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Eluã Ramos Coutinho ◽  
Robson Mariano da Silva ◽  
Jonni Guiller Ferreira Madeira ◽  
Pollyanna Rodrigues de Oliveira dos Santos Coutinho ◽  
Ronney Arismel Mancebo Boloy ◽  
...  

Abstract This study estimates and fills real flaws in a series of meteorological data belonging to four regions of the state of Rio de Janeiro. For this, an Artificial Neural Network (ANN) of Multilayer Perceptron (MLP) was applied. In order to evaluate its adequacy, the monthly variables of maximum air temperature and relative humidity of the period between 05/31/2002 and 12/31/2014 were estimated and compared with the results obtained by Multiple Linear Regression (MLR) and Regions Average (RA), and still faced with the recorded data. To analyze the estimated values and define the best model for filling, statistical techniques were applied such as correlation coefficient (r), Mean Percentage Error (MPE) and others. The results showed a high relation with the recorded data, presenting indexes between 0.94 to 0.98 of (r) for maximum air temperature and between 2.32% to 1.05% of (MPE), maintaining the precision between 97% A 99%. For the relative air humidity, the index (r) with MLP remained between 0.77 and 0.94 and (MPE) between 2.41% and 1.85%, maintaining estimates between 97% and 98%. These results highlight MLP as being effective in estimating and filling missing values.


2014 ◽  
Vol 1056 ◽  
pp. 30-33
Author(s):  
Ai Jun Yan ◽  
Yu Pei Shao ◽  
Yu Na Wang ◽  
Shu Qi Zhao ◽  
Qiang Qiang Liao

The corrosion behavior of galvanized steel for grounding grids in the red clay soil was studied by electrochemical impedance spectroscopy (EIS) and polarization curve measurement. The results show that the Iron-Aluminitma oxides can promote the galvanized steel corrosion in red solution. The resistance decreased with the increase of immersion time and the latter stage is less than the early stage. The corrosion current density of galvanized steel decreased with the increase of the content of Iron-Aluminitma oxides of soil solution.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 324
Author(s):  
Ayaz Ahmad ◽  
Krisada Chaiyasarn ◽  
Furqan Farooq ◽  
Waqas Ahmad ◽  
Suniti Suparp ◽  
...  

To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction because of the availability of adhered mortar on its surface, which poses a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables it to reach the targeted strength and be applicable for a wide range of construction projects. The targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming task, which may cause a delay in the construction work. To overcome this flaw, the application of supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial neural network (ANN) was employed in this study to predict the compressive strength of RCA-based concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the models. The k-fold cross-validation method was also adopted for the confirmation of the model’s performance. In comparison, the GEP model was more effective in terms of prediction by giving a higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In addition, a sensitivity analysis was conducted to know about the contribution level of each parameter used to run the models. Moreover, the increment in data points and the use of other supervised ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength, would give a better response.


Sign in / Sign up

Export Citation Format

Share Document