scholarly journals Phylogenetic reconstruction of adult blood cancer reveals early origins and lifelong evolution.

2020 ◽  
Author(s):  
Jyoti Nangalia ◽  
Nicholas Williams ◽  
Joe Lee ◽  
Luiza Moore ◽  
E Baxter ◽  
...  

Abstract Mutations in cancer-associated genes drive tumour outgrowth. However, the timing of driver mutations and dynamics of clonal expansion that lead to human cancers are largely unknown. We used 448,553 somatic mutations from whole-genome sequencing of 843 clonal haematopoietic colonies to reconstruct the phylogeny of haematopoiesis, from embryogenesis to clinical disease, in 10 patients with myeloproliferative neoplasms which are blood cancers more common in older age. JAK2V617F, the pathognomonic mutation in these cancers, was acquired in utero or childhood, with upper estimates of age of acquisition ranging between 4.1 months and 11.4 years across 5 patients. DNMT3A mutations, which are associated with age-related clonal haematopoiesis, were also acquired in utero or childhood, by 7.9 weeks of gestation to 7.8 years across 4 patients. Subsequent driver mutation acquisition was separated by decades. The mean latency between JAK2V617F acquisition and clinical presentation was 34 years (range 20-54 years). Rates of clonal expansion varied substantially (<10% to >200% expansion/year), were affected by additional driver mutations, and predicted latency to clinical presentation. Driver mutations and rates of expansion would have been detectable in blood one to four decades before clinical presentation. This study reveals how driver mutation acquisition very early in life with life-long growth trajectories drive adult blood cancer, providing opportunities for early detection and intervention, and a new paradigm for cancer development.

2020 ◽  
Author(s):  
Nicholas Williams ◽  
Joe Lee ◽  
Luiza Moore ◽  
E Joanna Baxter ◽  
James Hewinson ◽  
...  

ABSTRACTMutations in cancer-associated genes drive tumour outgrowth. However, the timing of driver mutations and dynamics of clonal expansion that lead to human cancers are largely unknown. We used 448,553 somatic mutations from whole-genome sequencing of 843 clonal haematopoietic colonies to reconstruct the phylogeny of haematopoiesis, from embryogenesis to clinical disease, in 10 patients with myeloproliferative neoplasms which are blood cancers more common in older age. JAK2V617F, the pathognomonic mutation in these cancers, was acquired in utero or childhood, with upper estimates of age of acquisition ranging between 4.1 months and 11.4 years across 5 patients. DNMT3A mutations, which are associated with age-related clonal haematopoiesis, were also acquired in utero or childhood, by 7.9 weeks of gestation to 7.8 years across 4 patients. Subsequent driver mutation acquisition was separated by decades. The mean latency between JAK2V617F acquisition and clinical presentation was 31 years (range 12-54 years). Rates of clonal expansion varied substantially (<10% to >200% expansion/year), were affected by additional driver mutations, and predicted latency to clinical presentation. Driver mutations and rates of expansion would have been detectable in blood one to four decades before clinical presentation. This study reveals how driver mutation acquisition very early in life with life-long growth and evolution drive adult blood cancer, providing opportunities for early detection and intervention, and a new paradigm for cancer development.


Blood ◽  
2020 ◽  
Vol 136 (Supplement_2) ◽  
pp. LBA-1-LBA-1
Author(s):  
Nicholas Williams ◽  
Joe Lee ◽  
Luiza Moore ◽  
Joanna E Baxter ◽  
James Hewinson ◽  
...  

Background Recurrent mutations in cancer-associated genes drive tumour outgrowth, however, the timing of driver mutations and the dynamics of clonal expansion remain largely unknown. Philadelphia-negative myeloproliferative neoplasms (MPN) are unique cancers capturing the earliest stages of tumorigenesis through to disease evolution. Most patients harbor JAK2V617F, present as the only driver mutation or occurring in combination with driver mutations in genes such as DNMT3A or TET2. We aimed to identify the timing of driver mutations and clonal dynamics in adult MPN. Method We undertook whole-genome sequencing of individual single-cell derived hematopoietic colonies (n=952) together with targeted resequencing of longitudinal blood samples from 10 patients with MPN who presented with disease between ages 20 and 76 years. We identified 448,553 somatic mutations which were used to reconstruct phylogenetic trees of hematopoiesis, tracing blood cell lineages back to embryogenesis. We timed driver mutation acquisition, characterised the dynamics of tumour evolution and measured clonal expansion rates over the lifetime of patients. Resequencing of bulk blood samples corroborated clonal trajectories and provided population estimates. Results JAK2V617F was acquired in utero or childhood in all patients in whom JAK2V617F was the first or the only driver mutation. Earliest age estimates were within a few weeks post conception, and upper estimates of age of acquisition were between 4.1 months and 11.4 years, despite wide ranging ages of MPN presentation. The mean latency between JAK2V617F acquisition and clinical presentation was 34 years (range 20-54 years). Subsequent driver mutation acquisition, including for JAK2V617F, was separated by decades. Disease latency following acquisition of JAK2V617F as a second driver event was still 12-27 years. DNMT3A mutations, commonly associated with age-related clonal hematopoiesis (CH), occurred as the first driver event, subsequent to mutated-JAK2, and as independent clones representing CH in MPN patients. DNMT3A mutations were also first acquired in utero or childhood, at the earliest 1.2 weeks post conception, and the latest 7.9 weeks of gestation to 7.8 years across 4 patients. A recurrent feature of the clonal landscape in MPN was the observation of similar genetic changes repeatedly occurring in unrelated clones within the same patient. Such 'parallel evolution' was observed for chr9p loss-of-heterozygosity, chr1q+ and mutations in myeloid cancer genes, suggesting that patient-specific factors flavour selective landscapes in MPN. Normal hematopoietic stem cells accumulated ~18 somatic mutations/year, however, mutant clones, particularly those with mutant-JAK2, acquired 1.5-5.5 excess mutations/ year and had shorter telomeres, reflecting increased cell divisions during clonal expansion. We modelled the rates of clonal expansion and found that they varied substantially, both across patients and within individuals. In one patient, an in utero acquired DNMT3A-mutated clone expanded slowly at &lt;10%/year, taking 30 years to reach a clonal fraction of 1%, whilst a clone with mutated-JAK2, -DNMT3A and -TET2 expanded at &gt;200%/year, doubling in size every 7 months. JAK2V617F as a single driver mutation also expanded variably across patients, highlighting that other factors, which may include germline, cytokine or stem cell differences between individuals, also influence selection for driver mutations. JAK2V617F associated clonal expansion rates in MPN were greater than that reported for JAK2-CH. Furthermore, rates of expansion in the cohort predicted time to clinical presentation, more so than age of mutation acquisition or tumour burden at diagnosis. This suggests that JAK2-mutant clonal expansion rates determine both if and when clinical manifestations occur. Driver mutations and rates of clonal expansion would have been detectable in blood one to four decades before clinical presentation. Conclusions MPN originate from driver mutation acquisition very early in life, even before birth, with life-long clonal expansion and evolution, establishing a new paradigm for blood cancer development. Early detection of mutant-JAK2 together with determination of clonal expansion rates could provide opportunities for early interventions aimed at minimising thrombotic risk and targeting the mutant clone in at risk individuals. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2100
Author(s):  
Lasse Kjær

Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5373-5373
Author(s):  
Mazyad Jamal Almazyad ◽  
Aisha S Alwehaib ◽  
Salem Alshemmari

Introduction Myeloproliferative neoplasms (MPNs) are a group of hematopoietic disorders of stem-cell origin, characterized by mutations that disrupt hematopoietic signal-transduction pathways. The Middle East lacks an MPN registry representative of the disease in our area. Here we report on the epidemiology of these neoplasms in our area, including phenotype, clinical features and relevant outcomes. Methods This population-based study reports various demographic characteristics and clinical attributes of all suspected and confirmed MPN patients from all over Kuwait referred to the research hematology lab at Kuwait University & cytogenetic lab in Kuwait Cancer Control Centre (KCCC) during the period from 2007 to 2018. Molecular determination of the patients' driver mutation status currently relies on ARMS-PCR. Confirming a diagnosis follows the WHO criteria, and its refinements, for the diagnosis of MPNs. Data entry and analysis was performed using SPSS (v.22) software. Results Most patients are ≥ 40 years old (79.8%), with a median age of 55 years. Gender distribution is almost equal, with ethnic categorization as Kuwaiti and Non-Kuwaiti showing a similar pattern. ET is the most common diagnosis (40.1%), followed by PRV (32.3%). JAK2 V617F mutation is reported positive in 89.7% of cases, followed by CALR in 8.0% of MPNs. The incidence of MPNs ranged from 0.5 to 2.1 per 100,000 in 2007 through 2018. The lowest rate was recorded in 2007 (0.511) and the highest was observed in 2011 and 2016 (2.417 and 2.101, respectively). The increase in 2011 is likely due to the introduction of a more sensitive technique using ARMS-PCR for the diagnosis of MPNs, whereas the increase in 2017 may be explained by the publication of WHO 2016 modified criteria. Moreover, throughout the years, the distribution of MPNs in different age groups showed similar pattern, with the highest incidence in patients aged ≥ 60. Driver mutations can fit with a general increase in incidence from 2007-2017, which may be attributed to increased awareness among treating physicians asking suspected cases to screen for MPNs using molecular techniques.One hundred and twenty-four (18.5%) cases were documented to have a prior history of thrombosis, with roughly equal distribution between arterial and venous sites. A large proportion (89.5%) of the thrombotic events occurred in those who are ≥ 40 years old, with most events being associated with ET (34.7%) and PRV (33.1%). Almost one-third of cases of thrombosis were associated with undetermined MPN diagnosis. Participating patients were categorized as either low or high risk for thrombotic events, with the latter being defined as age ≥ 55 years and the presence of a previous thrombotic event. The results demonstrate that a total of 46 cases were defined as high risk, most of them being associated with ET (20 cases) and PRV (19 cases). A statistically significant association was reported between gender and site of occurrence of thrombotic events, with males having more arterial thromboses, and females were documented to have more venous thromboses. Conclusion JAK2 V617F driver mutation is the most common positive finding in the participating patients. Roughly one-fifth of the participants encountered thrombotic events, and the site of thrombosis is associated with gender, demonstrating statistical significance. These results should warrant a more thorough evaluation of MPNs in Kuwait to provide a better understanding of its epidemiology. This can be achieved through optimized documentation of patients' data, and testing for additional novel driver mutations and transformation; as well as encourage physicians in primary care centers to refer suspected cases for molecular diagnosis. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
M.L. Clarke ◽  
R.B. Lemma ◽  
D.S. Walton ◽  
G. Volpe ◽  
B. Noyvert ◽  
...  

ABSTRACTThe Myb transcription factor plays critical roles in normal and malignant hematopoiesis. Acquired genetic dysregulation of Myb, which plays a central role in hematopoietic stem cell (HSC) gene regulation, is involved in the etiology of a number of leukemias. Also, inherited non-coding variants of the Myb gene are a factor in susceptibility to many hematological conditions, including myeloproliferative neoplasms (MPN), but the mechanisms by which variations in Myb levels predispose to disease, including age-dependency in disease occurrence, are completely unknown. Here, we address these key points by showing that Myb insufficiency in mice leads in later life to MPN, myelodysplasia, and leukemia, mirroring the age profile of equivalent human diseases. This age-dependence is intrinsic to HSC, involving progressive accumulation of subtle changes. Interestingly, and linking to previous studies showing the importance of proteostasis to the maintenance of normal HSC, we observed altered proteosomal activity in young Myb-insufficient mice and later elevated ribosome activity. We propose that these alterations collectively cause an imbalance in proteostasis, potentially creating a cellular milieu favoring disease initiation by driver mutations.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2577-2577
Author(s):  
Pratibha Bhai ◽  
Benjamin Chin-Yee ◽  
Ian Cheong ◽  
Maxim Matyashin ◽  
Michael A. Levy ◽  
...  

Abstract Background: JAK2 V617F and exon 12 mutations are the characteristic driver mutations in polycythemia vera (PV), identified in more than 95% of patients. In addition, other genetic mutations have previously been described in JAK2-positive PV that appear to have prognostic significance (Tefferi et al., Blood 2016). The incidence of other driver mutations in unselected patients referred for elevated hemoglobin is less well studied. This study aims to characterize the genetic mutational landscape in a real-world population of patients referred for elevated hemoglobin using a targeted Next-Generation Sequencing (NGS)-based assay. Methods: We reviewed all patients referred for elevated hemoglobin levels (&gt;160 g/L in females or &gt;165 g/L in males) between 2018 and 2020 to hematology clinics at London Health Sciences Centre in Southwestern Ontario, Canada who underwent testing for genetic variants using the NGS-based Oncomine Myeloid Research Assay (ThermoFisher Scientific, MA, USA). This assay targets 40 key genes with diagnostic and prognostic implications in several myeloid malignancies (17 full genes and 23 genes with clinically relevant "hotspot" regions) and a panel of 29 fusion driver genes (&gt;600 fusion partners). Patient demographics, laboratory data and final diagnosis were extracted from the electronic medical record. For all patients with genetic mutations, clinical diagnosis was confirmed by three independent reviewers. Results: A total of 529 patients underwent genetic testing for elevated hemoglobin levels: 389 (73.5%) were males (mean age 58; range 18-95) and 140 (26.5%) were female (mean age 60; range 24-85). JAK2 mutations were detected in 10.9% (58/529) of patients and a diagnosis of PV was confirmed. The majority of JAK2-mutated PV patients (n=57) were positive for JAK2 V617F, while one patient had an exon 12 mutation. Additional single myeloid mutations were detected in 34.5% (20/58) of JAK2-positive patients and involved the following genes: TET2 (11; 19%), DNMT3A (2; 3.4%), ASXL1 (2; 3.4%), SRSF2 (2; 3.4%), BCOR (1; 1.7%), TP53 (1; 1.7%) and ZRSR2 (1; 1.7%) (Figure 1A). JAK2 mutations were not detected in 89.0% (471/529) of our cohort. A diagnosis of PV was confirmed in 2 JAK2-negative patients based on clinical features and myeloid mutations were detected in both: SRSF2 and TET2 gene mutations in 1 patient and SRSF2, IDH2, ASXL1 gene mutations in the other patient. Three JAK2-negative patients tested positive for the BCR-ABL fusion and were diagnosed with chronic myeloid leukemia. The remaining 466 JAK2-negative patients were diagnosed with secondary erythrocytosis and myeloid mutations were found in 6% (28/466) of these cases. Mutations were detected in DNMT3A (12; 2.6%), TET2 (5; 1.1%), ASXL1 (5; 1.1%), TP53 (2; 0.4%), NF1 (2; 0.4%), KIT (1; 0.2%), U2AF1 (1; 0.2%) (Figure 1B). All patients with JAK2-negative secondary erythrocytosis had only one myeloid gene mutation detected. Conclusion: Additional myeloid mutations other than JAK2 mutations are frequently identified in patients referred for erythrocytosis, with the highest frequencies observed in the TET2, DNMT3A and ASXL1 genes. The spectrum of myeloid mutations and overall incidence in JAK2-negative patients with secondary erythrocytosis is similar to the reported incidence of Clonal Hematopoiesis of Indeterminate Potential (CHIP) (Jaiswal et al., NEJM 2014), and suggests that these may represent incidental age-related mutations. By contrast, among the JAK2-positive patients, 34.5% had at least one additional myeloid mutation supporting a pathogenic role in these patients with myeloproliferative neoplasms. While concomitant myeloid mutations in patients with PV are well-described, further research is required to elucidate the significance of variants identified in JAK2-negative patients classified as secondary erythrocytosis in order to determine whether these mutations contribute to clinical phenotype or represent background CHIP. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1215-1215 ◽  
Author(s):  
Takamasa Katagiri ◽  
Ryo Tominaga ◽  
Keisuke Kataoka ◽  
Akio Maeda ◽  
Hiroshi Gomyo ◽  
...  

Abstract Background: The clonal expansion of PIGA mutant hematopoietic stem cells (HSCs) can be induced by secondary driver mutations in genes such as HMGA2 and JAK2 in some patients with paroxysmal nocturnal hemoglobinuria (PNH). Theoretically, this type of PNH may be cured by molecular targeted therapy if the therapy is specific for the driver mutations and can eliminate PIGA mutant HSCs that acquired a proliferative advantage. However, this theory has not been proven because of the lack of an appropriate targeted therapy for known driver mutations responsible for clonal expansion of PIGA mutant HSCs. We recently treated a case of PNH complicated by chronic myeloid leukemia (CML) with nilotinib and observed a complete molecular response of CML followed by a complete disappearance of glycosylphosphatidylinositol-anchored protein-deficient (GPI-AP-, PNH-type) cells after 19 months of treatment. Case report: The patient, a 27-year-old Japanese woman, developed severe anemia with leukocytosis and thrombocytosis in 2013. The laboratory findings on admission were as follows: white blood cell count of 18.7x109/L with 1.7% stab neutrophils, 5.4% segmented neutrophils, 9.3% basophils, 1.3% promyelocytes, 5.0% myelocytes, 3.0% metamyelocytes, 18.0% lymphocytes and 0.7% blasts; hemoglobin (Hb)=6.0 g/dL, platelets=1,000x109/L, 20.0% reticulocytes, total/direct bilirubin=1.9/0.3 mg/dL, LDH=1963 IU/L and haptoglobin <10 mg/dL. A high-sensitivity flow cytometry analysis of the patient's peripheral blood at diagnosis revealed that 99.2% of granulocytes, 75.7% of erythrocytes and 99.3% of monocytes were GPI-AP-, while no T cells, B cells or NK cells had the PNH-phenotype (Figure 1A). This GPI-AP- cell distribution pattern was in sharp contrast to that of a patient with typical PNH who showed various percentages of GPI-AP- cells in all lineages of leukocytes and erythrocytes (Figure 1B). A fluorescent in situ hybridization analysis showed that 98.0% of the patient's granulocytes were BCR-ABL gene-fusion positive. Deep sequencing of leukocytes obtained at diagnosis showed a G279T (Q93H) mutation in exon 4 of the PIGA gene. The patient was diagnosed with PNH complicated by CML in the chronic phase, and was treated with nilotinib at 400 mg/day. The percentage of GPI-AP- cells rapidly decreased in response to nilotinib, with 0.02% GPI-AP- granulocytes after six months of nilotinib therapy when the patient's BCR-ABL mRNA decreased to 0.007%. BCR-ABL mRNA decreased to less than 0.0035% 15 months after therapy; however, small populations of GPI-AP- granulocytes (0.01%) and erythrocytes (0.005%) were still detected at this time (Figure 1A). GPI-AP- cells became undetectable after 19 months of nilotinib therapy, suggesting that the BCR/ABL fusion occurred in a subclone of a PIGA mutant hematopoietic progenitor cell (HPC). The patient was continuing nilotinib as of August 2015 without any signs of an increase in the BCR-ABL mRNA copy number. Conclusions: This case indicates the BCR-ABL fusion can be a driver mutation capable of inducing the clonal expansion of PIGA mutant clones. More importantly, the origin of PNH in our case proved to be a minor HPC clone with a PIGA mutation, suggesting that PNH can be derived from an HPC with a limited life span only if a potent second hit occurs in the PIGA mutant HPC. The identification of driver mutations in patients with PNH may therefore lead to the development of targeted therapy capable of curing PNH. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 2 (9) ◽  
pp. 1000-1012 ◽  
Author(s):  
Tatsuya Imi ◽  
Takamasa Katagiri ◽  
Kazuyoshi Hosomichi ◽  
Yoshitaka Zaimoku ◽  
Viet Hoang Nguyen ◽  
...  

Key Points HSPCs that lack HLA class I alleles can sustain clonal hematopoiesis without driver mutations or telomere attrition in AA patients. 6pLOH may confer a survival advantage to HSPCs with age-related somatic mutations, leading to the clonal expansion of mutant HSPCs.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5473-5473
Author(s):  
Elizaveta Efremova ◽  
Olesya Matvienko ◽  
Natalya Korsakova ◽  
Mikhail Fominykh ◽  
Natalya Silina ◽  
...  

Abstract Background: Thrombosis in Primary Myelofibrosis (PMF) is one of the main but not fully covered problem. Thrombotic complications in PMF occur more frequently than in general population and could result to morbidity and lethality of patients. Several previous studies have demonstrated different thrombotic rates related to type molecular driver mutation (JAK2V617F, CALR, MPL) in myeloproliferative neoplasms, but this fact now is not fully understood. The standard clotting tests cover only initial stages of coagulation and could not evaluate anticoagulant system. Its results are not varied in PMF patients with different mutations. We have interested and initiated study of the coagulation system in PMF patients with integral hemostasis test - Calibrated Automated Thrombography (CAT). Here we present the results of pilot study group assessment. Aim: to investigate of the coagulation system in PMF patients with different molecular driver mutations (JAK2V617F, CALR, MPL) using thrombin generation test. Methods: The study included 13 MF patients (26 - 71 years, median = 40). There were 11 females and 2 males. Nine patients were JAK2V617F positive, 3 had CALR mutations and one patient was MPL-mutated. Thrombin generation was assessed by calibrated automated thrombinography (CAT) according to Hemker et al. Assessments were conducted in platelet poor plasma (PPP) with or without presence of thrombomodulin (PPP reagent +/- TM) as an activator of protein C system. The following parameters were evaluated: endogenous thrombin potential (ETP, nM*min), peak thrombin (Peak, nM), lag-time (Lag, min), and time to peak (TTP, min). Sensitivity ETP and Peak for TM were calculated as percent of decreasing of these parameters after adding to assay of TM (S ETP, % and S Peak, % respectively). STATISTICA 6.0 package was used in data analysis. Results were presented as median (Me) with 95% confidence intervals (CI). Results: ETP was highest in JAK2V617F patients (1213.57; min 781.60-max 1781.26 nM*min), intermediate in CALR (1058.47; min 933.14-max 1190.79 nM*min) and lowest in MPL group (972.49 nM*min). However, the Peak was higher in CALR (207.57; min 165.63-max 235.36 nM) than in JAK2V617F (160.9; (min 94.38-max 317.11 nM) and MPL (136.19 nM). We have observed disruption of protein C functioning in JAK2V617F (S-ETP 34%, min 8.65%-max 68.73%; S-Peak 20%, min 0.01%-max 44.64%) and MPL (S-ETP 46%; S-Peak 24%) groups compared to CALR patients (S-ETP 6.4%, min 2.5%-max 9.2%; S-Peak 1.8%, min 0.87%-max 1.8%). Conclusion: The results of thrombin production were differed in relation to driver mutation type. JAK2V617F-patients produced more thrombin and have protein C system dysfunction. It could be serve as an explanation of higher risk of thrombosis in MF patients with JAK2V617F mutation. The yielded results force us to continue research to confirm our findings on representative sample of PMF patients. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 18 ◽  
pp. S267-S268
Author(s):  
Theodoros Karantanos ◽  
Shruti Chaturvedi ◽  
Styliani Karanika ◽  
Evan Braunstein ◽  
Linda Resar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document