scholarly journals Chitopentaose Inhibits Hepatocellular Carcinoma by Inducing Mitochondrial Mediated Apoptosis and Suppressing Protective Autophagy

2020 ◽  
Author(s):  
Chunfeng Zhu ◽  
Mengyao Zhao ◽  
Liqiang Fan ◽  
Xuni Cao ◽  
Quanming Xia ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent and deadliest cancers. In this study, the anti-tumor effect of singular degree of polymerization (DP) chitooligosaccharides (COS) (DP 2-5) and the underlay molecular mechanisms were investigated on HCC cell line HepG2. MTT assay showed that (GlcN)5 have the best anti-proliferation effect among the different DP of COS (DP2-5). Furthermore, the administration of (GlcN)5 could decrease mitochondrial membrane potential, release cytochrome c into cytoplasm, activate the cleavage of Caspases9/3, thus inducing mitochondrial-mediated apoptosis. Additionally, (GlcN)5 treatment could increase the accumulation of autophagosomes. Further investigation showed that (GlcN)5 suppressed protective autophagy at the fusion of autophagosomes and lysosomes. Moreover, the inhibition of protective autophagy flux by (GlcN)5 could further decrease cell viability and increase apoptosis rate. Our findings suggested that (GlcN)5 suppressed HepG2 proliferation through inducing apoptosis via intrinsic pathway and impairing cell protective autophagy. COS might have the potential to be an agent for lowering the risk of HCC.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chunfeng Zhu ◽  
Mengyao Zhao ◽  
Liqiang Fan ◽  
Xuni Cao ◽  
Quanming Xia ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most prevalent and deadliest cancers. In this study, the anti-tumor effect of singular degree of polymerization (DP) chitooligosaccharides (COS) (DP 2–5) and the underlay molecular mechanisms were investigated on HCC cell line HepG2. MTT assay showed that (GlcN)5 have the best anti-proliferation effect among the different DP of COS (DP2-5). Furthermore, the administration of (GlcN)5 could decrease mitochondrial membrane potential, release cytochrome c into cytoplasm, activate the cleavage of Caspases9/3, thus inducing mitochondrial-mediated apoptosis in HepG2 cells (accounting for 24.57 ± 2.25%). In addition, (GlcN)5 treatment could increase the accumulation of autophagosomes. Further investigation showed that (GlcN)5 suppressed protective autophagy at the fusion of autophagosomes and lysosomes. Moreover, the inhibition of protective autophagy flux by (GlcN)5 could further decrease cell viability and increase the apoptosis rate. Our findings suggested that (GlcN)5 suppressed HepG2 proliferation through inducing apoptosis via the intrinsic pathway and impairing cell-protective autophagy. COS might have the potential to be an agent for lowering the risk of HCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Wang ◽  
Chunhui Xia ◽  
Wei Chen ◽  
Yuhang Chen ◽  
Yiyi Wang ◽  
...  

Photodynamic therapy (PDT) is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc- (TαPcZn-) mediated PDT (TαPcZn-PDT) inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE) staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI) double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Daofang Jiang ◽  
Chensheng Fu ◽  
Jing Xiao ◽  
Zhenxing Zhang ◽  
Jianan Zou ◽  
...  

Mitochondrial dysfunction has been implicated in the early stages or progression of many renal diseases. Improving mitochondrial function and homeostasis has the potential to protect renal function. Serum- and glucocorticoid-induced kinase 1 (SGK1) is known to regulate various cellular processes, including cell survival. In this study, we intend to demonstrate the effect and molecular mechanisms of SGK1 in renal tubular cells upon oxidative stress injury and to determine whether regulation of mitochondrial function is implicated in this process. HK-2 cells were exposed to H2O2, and cell viability and apoptosis were dynamically detected by the CCK-8 assay and annexin-V/PI staining. The concentrations of cellular reactive oxygen species (ROS) and adenosine triphosphate (ATP) and the expression of the SGK1/GSK3β/PGC-1α signaling pathway were analyzed by flow cytometry or western blot. In addition, shRNA targeting SGK1 and SB216763 were added into the culture medium before H2O2 exposure to downregulate SGK1 and GSK3β, respectively. Cell viability and mitochondrial functions, including mitochondrial membrane potential (Δψm), Cytochrome C release, mtDNA copy number, and mitochondrial biogenesis, were examined. Protein levels and SGK1 activation were significantly stimulated by H2O2 exposure. HK-2 cells with SGK1 inhibition were much more sensitive to H2O2-induced oxidative stress injury than control group cells, as they exhibited increased apoptotic cell death and mitochondrial dysfunction involving the deterioration of cellular ATP production, ROS accumulation, mitochondrial membrane potential reduction, and release of Cytochrome C into the cytoplasm. Studies on SGK1 knockdown also indicated that SGK1 is required for the induction of proteins associated with mitochondrial biogenesis, including PGC-1α, NRF-1, and TFAM. Moreover, the deleterious effects of SGK1 suppression on cell apoptosis and mitochondrial function, including mitochondrial biogenesis, were related to the phosphorylation of GSK3β and partially reversed by SB216763 treatment. H2O2 leads to SGK1 overexpression in HK-2 cells, which protects human renal tubule cells from oxidative stress injury by improving mitochondrial function and inactivating GSK3β.


2018 ◽  
Author(s):  
Xu Chao ◽  
Guoquan Wang ◽  
Yuping Tang ◽  
Changhu Dong ◽  
Hong Li ◽  
...  

AbstractPeiminine is a compound that is isolated fromBolbostemma paniculatum(Maxim) Franquet (Cucurbitaceae family), which has demonstrated antitumor activities. Its precise molecular mechanisms underlying antitumor activity remain elusive. In this study, peiminine-induced apoptosis towards human hepatocellular carcinoma and its molecular mechanisms were investigated. MTT assay was employed to assess anticancer effects of peiminine at concentrations of 2, 4, 6, 8, 10, 12, and 14 μg/ml after 24, 48, or 72 h. Nuclear staining and flow cytometry were carried out to further assess apoptosis. Mitochondrial membrane potential evaluation and Western blot analysis were performed to investigate the mechanism of peiminine-induced apoptosis. Peiminine reduced the viability of HepG2 cells in a time- and dose-dependent manner and had an IC50of 4.58 μg/mL at 24h. Flow cytometry assessment indicated that peiminine markedly increased the cell number of apoptotic cells and the mitochondrial membrane potential dose-dependently in HepG2 cells. The results of Western blotting showed the expression of Bcl-2, procaspase-3, procaspase-8, procaspase-9, and PARP1decreased in HepG2 cells treated with peiminine, while the expression of Bax, caspase-3, caspase-8, caspase-9, and cleaved PARP1increased. The result suggest taht peiminine can induce apoptosis in human hepatocellular carcinoma HepG2 cells through both extrinsic and intrinsic apoptotic pathways.


2019 ◽  
Vol 19 (9) ◽  
pp. 673-682 ◽  
Author(s):  
Panpan Chang ◽  
Yuzi Tian ◽  
Aaron M. Williams ◽  
Umar F. Bhatti ◽  
Baoling Liu ◽  
...  

Background: Histone deacetylase (HDAC) 6 inhibitors have demonstrated significant protective effects in traumatic injuries. However, their roles in neuroprotection and underlying mechanisms are poorly understood. This study sought to investigate the neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose deprivation (OGD) in HT22 hippocampal cells. Methods: HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl- 2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β were analyzed by Western blot analysis. Results: Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy. Tub-A significantly increased cell viability and attenuated LDH release after exposure to OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells following OGD and preserved the mitochondrial membrane potential. Tub-A also attenuated the release of cytochrome c from the mitochondria into the cytoplasm and suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by the increased phosphorylation of Akt and GSK3β signaling pathways. Conclusion: HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated apoptosis.


2019 ◽  
Vol 18 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Kun Fu ◽  
Liqiang Chen ◽  
Lifeng Miao ◽  
Yan Guo ◽  
Wei Zhang ◽  
...  

Background/Objective: Grape seed proanthocyanidins (GSPs) are a group of polyphenolic bioflavonoids, which possess a variety of biological functions and pharmacological properties. We studied the neuroprotective effects of GSP against oxygen-glucose deprivation/reoxygenation (OGD/R) injury and the potential mechanisms in mouse neuroblastoma N2a cells. Methods: OGD/R was conducted in N2a cells. Cell viability was evaluated by CCK-8 and LDH release assay. Apoptosis was assessed by TUNEL staining and flow cytometry. Protein levels of cleaved caspase-3, Bax and Bcl-2 were detected by Western blotting. CHOP, GRP78 and caspase-12 mRNA levels were assessed by real-time PCR. JC-1 dying was used to detect mitochondrial membrane potential. ROS levels, activities of endogenous antioxidant enzymes and ATP production were examined to evaluate mitochondrial function. Results: GSP increased cell viability after OGD/R injury in a dose-dependent manner. Furthermore, GSP inhibited cell apoptosis, reduced the mRNA levels of CHOP, GRP78 and caspase-12 (ER stressassociated genes), restored mitochondrial membrane potential and ATP generation, improved activities of endogenous anti-oxidant ability (T-AOC, GXH-Px, and SOD), and decreased ROS level. Conclusion: Our findings suggest that GSP can protect N2a cells from OGD/R insult. The mechanism of anti-apoptotic effects of GSP may involve attenuating ER stress and mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document